ordinary differential equations
Recently Published Documents


TOTAL DOCUMENTS

6967
(FIVE YEARS 948)

H-INDEX

107
(FIVE YEARS 6)

2022 ◽  
Vol 48 (1) ◽  
pp. 1-4
Author(s):  
W. Van Snyder

Algorithm 982: Explicit solutions of triangular systems of first-order linear initial-value ordinary differential equations with constant coefficients provides an explicit solution for an homogeneous system, and a brief description of how to compute a solution for the inhomogeneous case. The method described is not directly useful if the coefficient matrix is singular. This remark explains more completely how to compute the solution for the inhomogeneous case and for the singular coefficient matrix case.


2022 ◽  
Vol 5 (1) ◽  
pp. 1-13
Author(s):  
Habib H. ◽  
Tahir A. ◽  
Musa S. ◽  
Yusuf K.P.

In this study, a fuzzy Laplace transform is used to solve second order linear homogeneous ordinary differential equations. The solution obtained is based on the concept of gH differentiability and the relation between the fuzzy Laplace transform and its derivative for is obtained. Examples are constructed for the existence and uniqueness of solutions of second order FODE.


2022 ◽  
Vol 16 (1) ◽  
pp. 72
Author(s):  
Zaileha Md Ali ◽  
Ezmir Faiz Mohd Puard ◽  
Muhamad Hariz Sudin ◽  
Nur Aziean Mohd Idris

Wastewater treatment is essential to preserve the ecosystem and to ensure water resources are uncontaminated. This paper presents the Lotka-Volterra model of nonlinear ordinary differential equations of the interaction between predator-prey and substrate. The dimensionless ordinary differential equations of the model are solved using the 4th Order Runge-Kutta method (RK4) in MATLAB®. This study discusses the behaviour parameters of predators, prey and substrate. The results are shown graphically for different values of each parameter. Hence, the biological reaction of clean water from the interaction of predator-prey and substrate in wastewater treatment is identified. The higher the concentration of prey, the faster the concentration of substrate reaches 0 with and without the natural death of prey. The clean water will be produced whenever the concentration of prey and the concentration of predator are in balance regardless of the natural death rate. Stability analysis using the Jacobian matrix at the equilibrium point is also performed to determine the stability of the system.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 185
Author(s):  
Angelamaria Cardone ◽  
Dajana Conte ◽  
Raffaele D’Ambrosio ◽  
Beatrice Paternoster

The present paper illustrates some classes of multivalue methods for the numerical solution of ordinary and fractional differential equations. In particular, it focuses on two-step and mixed collocation methods, Nordsieck GLM collocation methods for ordinary differential equations, and on two-step spline collocation methods for fractional differential equations. The construction of the methods together with the convergence and stability analysis are reported and some numerical experiments are carried out to show the efficiency of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document