Automated Carboxy-Terminal Sequence Analysis of Polypeptides Containing C-Terminal Proline

1995 ◽  
Vol 224 (2) ◽  
pp. 588-596 ◽  
Author(s):  
J.M. Bailey ◽  
O. Tu ◽  
G. Issai ◽  
A. Ha ◽  
J.E. Shively
1992 ◽  
Vol 1 (1) ◽  
pp. 68-80 ◽  
Author(s):  
Jerome M. Bailey ◽  
Narmada R. Shenoy ◽  
Michael Ronk ◽  
John E. Shively

1992 ◽  
Vol 1 (12) ◽  
pp. 1622-1633 ◽  
Author(s):  
Jerome M. Bailey ◽  
Firoozeh Nikfarjam ◽  
Narmada R. Shenoy ◽  
John E. Shively

1997 ◽  
Vol 252 (1) ◽  
pp. 169-176 ◽  
Author(s):  
Bilan Mo ◽  
Jiang Li ◽  
Songping Liang

1978 ◽  
Vol 56 (9) ◽  
pp. 920-925 ◽  
Author(s):  
N. G. Seidah ◽  
R. Routhier ◽  
M. Caron ◽  
M. Chrétien ◽  
S. Demassieux ◽  
...  

In this paper, we present the amino-terminal sequence of rat tonin, an endopeptidase responsible for the conversion of angiotensinogen, the tetradecapeptide renin substrate, or angiotensin I to angiotensin II. It is shown that isoleucine and proline occupy the amino- and carboxy-terminal residues respectively. The N-terminal sequence analysis permitted the identification of 34 out of the first 40 residue s of the single polypeptide chain composed of 272 amino acids. The se results showed an extensive homology with the sequence of many serine proteases of the trypsin–chymotrypsin family. This information, coupled with the slow inhibition of tonin by diisopropylfluorophosphate, classified this enzyme as a selective endopeptidase of the active serine protease family.


2000 ◽  
pp. 119-131
Author(s):  
David R. Dupont ◽  
MeriLisa Bozzini ◽  
Victoria L. Boyd

Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 1065-1074 ◽  
Author(s):  
John A. Samis ◽  
Marilyn Garrett ◽  
Reginald P. Manuel ◽  
Michael E. Nesheim ◽  
Alan R. Giles

The effect of human neutrophil elastase (HNE) on human factor V (F.V) or α-thrombin–activated human factor V (F.Va) was studied in vitro by prothrombinase assays, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and NH2 -terminal sequence analysis. Incubation of F.V (600 nmol/L) with HNE (2 nmol/L) in the presence of Ca2+ resulted in a time-dependent increase in its cofactor activity. In contrast, treatment of F.Va (600 nmol/L) with HNE (60 nmol/L) in the presence of Ca2+ resulted only in a time-dependent decrease in its cofactor activity. Under the conditions of these experiments, the maximum extent of F.V activation accomplished by incubation with HNE was approximately 65% to 70% of that observed with α-thrombin in presence of Ca2+. The extent of both the HNE-dependent enhancement in F.V cofactor activity and the HNE-dependent decrease in F.Va cofactor activity was not influenced by the addition of phosphatidylcholine/phosphatidylserine (PCPS) vesicles (50 μmol/L). The HNE-derived cleavage products of F.V, which correlated with increased cofactor activity, as demonstrated by SDS-PAGE under reducing conditions, were different from those generated using α-thrombin. Treatment of F.V (600 nmol/L) with HNE (2 nmol/L) in the presence of Ca2+ resulted in the production of three closely spaced doublets of: 99/97, 89/87, and 76/74 kD whose appearance over time correlated well with the increased cofactor activity as judged by densitometry. Treatment of F.Va (600 nmol/L) with HNE (60 nmol/L) in the presence of Ca2+ resulted in the cleavage of both the 96 kD heavy chain and the 74/72 kD light chain into products of: 56, 53, 35, 28, 22, and 12 kD. Although densitometry indicated that both the heavy and light chains of F.Va were hydrolyzed by HNE, cleavage of the 96 kD heavy chain was more extensive during the time period (10 to 30 minutes) of the greatest loss of F.Va cofactor activity. NH2 -terminal sequence analysis of F.V treated with HNE indicated cleavage at Ile819 and Ile1484 under conditions during which the procofactor expressed enhanced cofactor activity in the prothrombinase complex. NH2 -terminal sequence analysis of F.Va treated with HNE indicated cleavage at Ala341, Ile508, and Thr1767 under conditions, which the cofactor became inactivated, as measured by prothrombinase activity. The activation and inactivation cleavage sites are close to those cleaved by the physiological activator and inactivator of F.V and F.Va, namely α-thrombin (Arg709 and Arg1545) and Activated Protein C (APC) (Arg306 and Arg506), respectively. These results indicate that HNE can generate proteolytic products of F.V, which initially express significantly enhanced procoagulant cofactor activity similar to that observed following activation with α-thrombin. In contrast, HNE treatment of F.Va resulted only in the loss of its cofactor activity, but again, this is similar to that observed following inactivation by APC.


1981 ◽  
Author(s):  
M J Rabiet ◽  
B Furie ◽  
B C Furie

The conversion of human prothrombin to thrombin is associated with a number of cleavage intermediates and products whose appearance and concentration are dependent upon the prothrombin activation conditions used. In the current investigation, the fragments of prothrombin which appear in normal human plasma after activation of the blood coagulation cascade were studied. Radioiodinated human prothrombin was added to platelet-poor relipidated normal human plasma and clotting initiated with Ca(II) and kaolin. The radiolabeled prothrombin cleavage products which formed were analyzed by polyacrylamide gel electrophoresis in the presence of dodecyl sulfate (SDS) and 2-mercaptoethanol (2-ME), A new product of prothrombin activation was observed. Its migration was more rapid than prethrombin 1 and slower than fragment 1.2. No previously identified products of prothrombin activation migrated to the same position in the gel.The previously unrecognized fragment was identified as fragment 1.2.3 as follows. Prothrombin was activated by factor Xa in the presence of Ca(II) and phospholipid. The desired product was isolated by absorption to and elution from barium citrate and by DEAE cellulose chromatography. This purified material, migrating identically with the unknown plasma product was homogeneous upon SDS gel electrophoresis with 2-ME. The amino terminal sequence of the isolated material was identical to that of prothrombin. Digestion of this material with either factor Xa or thrombin yielded as major products fragment 1.2 and fragment 1. (Fragment 2 and fragment 3 eluted from the gels under the conditions employed). Amino terminal sequence analysis of the factor Xa digestion products of the isolated material indicated three amino acid residues at each cycle. The sequences of fragment 1, fragment 2, and fragment 3 are consistent with this sequence analysis. On this basis we suggest that fragment 1.2.3 is a prominent product of prothrombin conversion to thrombin in plasma.


Sign in / Sign up

Export Citation Format

Share Document