terminal amino
Recently Published Documents


TOTAL DOCUMENTS

1753
(FIVE YEARS 82)

H-INDEX

84
(FIVE YEARS 5)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 545
Author(s):  
Niccolò Chiaramonte ◽  
Alessio Gabellini ◽  
Andrea Angeli ◽  
Gianluca Bartolucci ◽  
Laura Braconi ◽  
...  

A series of histamine (HST)-related compounds were synthesized and tested for their activating properties on five physiologically relevant human Carbonic Anhydrase (hCA) isoforms (I, II, Va, VII and XIII). The imidazole ring of HST was replaced with different 5-membered heterocycles and the length of the aliphatic chain was varied. For the most interesting compounds some modifications on the terminal amino group were also performed. The most sensitive isoform to activation was hCA I (KA values in the low micromolar range), but surprisingly none of the new compounds displayed activity on hCA II. Some derivatives (1, 3a and 22) displayed an interesting selectivity for activating hCA I over hCA II, Va, VII and XIII.


Author(s):  
Yunzhi Xie ◽  
Chunhua Liu ◽  
Linxiu Cheng ◽  
Yulan Fan ◽  
Huifang Li ◽  
...  

2021 ◽  
Author(s):  
Tam Dang ◽  
Bernhard Loll ◽  
Sebastian Müller ◽  
Ranko Skobalj ◽  
Julia Ebeling ◽  
...  

Paenibacillus larvae, the causative agent of the devastating honey-bee disease American Foulbrood, produces the cationic polyketide-peptide hybrid paenilamicin that displays high antibacterial and antifungal activity. Its biosynthetic gene cluster contains a gene coding for the N-acetyltransferase PamZ. We show that PamZ acts as self-resistance factor in P. larvae by deactivation of paenilamicin. Using tandem MS, NMR spectroscopy and synthetic diastereomers, we identified the N-terminal amino group of the agmatinamic acid as the N-acetylation site. These findings highlight the pharmacophore region of paenilamicin, which we very recently identified as a new ribosome inhibitor. Here, we further elucidated the crystal structure of PamZ:acetyl-CoA complex at 1.34 Å resolution. An unusual tandem-domain architecture provides a well-defined substrate-binding groove decorated with negatively-charged residues to specifically attract the cationic paenilamicin. Our results will help to understand the mode of action of paenilamicin and its role in pathogenicity of P. larvae to fight American Foulbrood.


2021 ◽  
Vol 22 (21) ◽  
pp. 12028
Author(s):  
Aleksandra Kotynia ◽  
Benita Wiatrak ◽  
Wojciech Kamysz ◽  
Damian Neubauer ◽  
Paulina Jawień ◽  
...  

Antimicrobial peptides are a promising group of compounds used for the treatment of infections. In some cases, metal ions are essential to activate these molecules. Examples of metalloantibiotics are, for instance, bleomycin and dermcidin. This study is focused on three new pseudopeptides with potential biological activity. The coordination behavior of all ligands with Cu(II) and Ni(II) ions has been examined. Various analytical methods such as potentiometric titration, UV-Vis and CD spectroscopies, and mass spectrometry were used. All compounds are convenient chelators for metal ion-binding. Two of the ligands tested have histidine residues. Surprisingly, imidazole nitrogen is not involved in the coordination of the metal ion. The N-terminal amino group, Dab side chains, and amide nitrogen atoms of the peptide bonds coordinated Cu(II) and Ni(II) in all the complexes formed. The cytotoxicity of three pseudopeptides and their complexes was evaluated. Moreover, their other model allowed for assessing the attenuation of LPS-induced cytotoxicity and anti-inflammatory activities were also evaluated, the results of which revealed to be very promising.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2218
Author(s):  
Ronald Swanstrom ◽  
Wesley I. Sundquist

Steve Oroszlan determined the sequences at the ends of virion proteins for a number of different retroviruses. This work led to the insight that the amino-terminal amino acid of the mature viral CA protein is always proline. In this remembrance, we review Steve’s work that led to this insight and show how that insight was a necessary precursor to the work we have done in the subsequent years exploring the cleavage rate determinants of viral protease processing sites and the multiple roles the amino-terminal proline of CA plays after protease cleavage liberates it from its position in a protease processing site.


Fuel ◽  
2021 ◽  
Vol 304 ◽  
pp. 121366
Author(s):  
Yangang Bi ◽  
Wusong Li ◽  
Congcong Liu ◽  
Zhi Tan ◽  
Zhantao Wang ◽  
...  

Author(s):  
Akihiro Fujita ◽  
Akira Kawashima ◽  
Yuji Noguchi ◽  
Shuichi Hirose ◽  
Noriaki Kitagawa ◽  
...  

Abstract We performed whole genome sequence analyses of Agreia sp. D1110 and Microbacterium trichothecenolyticum D2006 that secrete enzymes to produce cyclo-{→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→6)-α-d-Glcp-(1→} (CI4) from dextran. Full-length amino acid sequences of CI4-forming enzymes were identified by matching known N-terminal amino acid sequences with products of the draft genome. Domain searches revealed that the CI4-forming enzymes are composed of Glycoside Hydrolase family 66 (GH66) domain, Carbohydrate Binding Module family 35 (CBM35) domain and CBM13 domain, categorizing the CI4-forming enzymes in the GH66. Furthermore, the amino acid sequences of the two CI4-forming enzymes were 71% similar to each other and up to 51% similar to cycloisomaltooligosaccharide glucanotransferases (CITases) categorized in GH66. Differences in sequence between the CI4-forming enzymes and the CITases suggest mechanisms to produce specific cycloisomaltooligosaccharides, and whole genome sequence analyses identified a gene cluster whose gene products likely work in concert with the CI4-forming enzymes.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1157
Author(s):  
Muhamad Nadzmi Omar ◽  
Raja Noor Zaliha Raja Abd Rahman ◽  
Noor Dina Muhd Noor ◽  
Wahhida Latip ◽  
Victor Feizal Knight ◽  
...  

Aminopeptidase P (APPro, E.C 3.4.11.9) cleaves N-terminal amino acids from peptides and proteins where the penultimate residue is proline. This metal-ion-dependent enzyme shares a similar fold, catalytic mechanism, and substrate specificity with methionine aminopeptidase and prolidase. It adopts a canonical pita bread fold that serves as a structural basis for the metal-dependent catalysis and assembles as a tetramer in crystals. Similar to other metalloaminopeptidase, APPro requires metal ions for its maximal enzymatic activity, with manganese being the most preferred cation. Microbial aminopeptidase possesses unique characteristics compared with aminopeptidase from other sources, making it a great industrial enzyme for various applications. This review provides a summary of recent progress in the study of the structure and function of aminopeptidase P and describes its various applications in different industries as well as its significance in the environment.


2021 ◽  
Vol 22 (18) ◽  
pp. 10039
Author(s):  
Yating Wang ◽  
Hainan Tian ◽  
Wei Wang ◽  
Xutong Wang ◽  
Kaijie Zheng ◽  
...  

The Arabidopsis WD40 repeat protein TRANSPARENT TESTA GLABRA1 (TTG1) regulates cell fate determination, including trichome initiation and root hair formation, as well as secondary metabolism such as flavonoid biosynthesis and seed coat mucilage production. TTG1 regulates different processes via regulating the expression of its downstream target genes by forming MYB-bHLH-WD40 (MBW) activator complexes with different R2R3 MYB and bHLH transcription factors. Here, we report the identification of the carboxyl (C)-terminus as a critical domain for TTG1′s functions in Arabidopsis. We found that the ttg1Δ15aa mutant shows pleiotropic phenotypes identical to a TTG1 loss-of-function mutant. Gene sequencing indicates that a single nucleotide substitution in TTG1 led to a premature stop at the W327 residue, leading to the production of a truncated TTG1 protein with a deletion of the last 15 C-terminal amino acids. The expression of TTG1 under the control of its native promoter fully restored the ttg1Δ15aa mutant phenotypes. Consistent with these observations, the expression levels of TTG1 downstream genes such as GLABRA2 (GL2) and CAPRICE (CPC) were reduced in the ttg1Δ15aa mutant. Assays in Arabidopsis protoplast show that TTG1Δ15aa failed to interact with the bHLH transcription factor GL3, and the deletion of the last 3 C-terminal amino acids or the 339L amino acid alone fully abolished the interaction of TTG1 with GL3. Furthermore, the expression of TTG1Δ3aa under the control of TTG1 native promoter failed to restore the ttg1Δ15aa mutant phenotypes. Taken together, our results suggest that the C-terminal domain of TTG1 is required for its proper function in Arabidopsis.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alexey Slobodinyuk ◽  
Vladimir Strelnikov ◽  
Dmitriy Kiselkov ◽  
Daria Slobodinyuk

Abstract A method for the synthesis of oligotetramethylene oxides with terminal amino groups is presented. Its use as a hardener for urethane-containing oligomers has been demonstrated. The diamines were synthesized by a two-stage method based on oligotetramethylene oxide diol. The compounds can be used for the production of non-toxic, biocompatible and biodegradable segmented urethane-containing elastomers. The oligotetramethylene oxide diol with an average molecular mass of 1008 was chosen as a typical precursor component. Its dibromide was formed using a quasi-phosphonium reagent in various solvents. The corresponding amine was obtained by high-pressure amination. The compounds have been identified by 1H and 13C NMR spectroscopy, IR spectroscopy, and elemental analysis.


Sign in / Sign up

Export Citation Format

Share Document