scholarly journals Polynomials over Finite Fields Which Commute with a Permutation Polynomial

1994 ◽  
Vol 163 (2) ◽  
pp. 295-311
Author(s):  
C.Y. Chao
2013 ◽  
Vol 89 (3) ◽  
pp. 420-430 ◽  
Author(s):  
XIAOER QIN ◽  
SHAOFANG HONG

AbstractIn this paper, we construct several new permutation polynomials over finite fields. First, using the linearised polynomials, we construct the permutation polynomial of the form ${ \mathop{\sum }\nolimits}_{i= 1}^{k} ({L}_{i} (x)+ {\gamma }_{i} ){h}_{i} (B(x))$ over ${\mathbf{F} }_{{q}^{m} } $, where ${L}_{i} (x)$ and $B(x)$ are linearised polynomials. This extends a theorem of Coulter, Henderson and Matthews. Consequently, we generalise a result of Marcos by constructing permutation polynomials of the forms $xh({\lambda }_{j} (x))$ and $xh({\mu }_{j} (x))$, where ${\lambda }_{j} (x)$ is the $j$th elementary symmetric polynomial of $x, {x}^{q} , \ldots , {x}^{{q}^{m- 1} } $ and ${\mu }_{j} (x)= {\mathrm{Tr} }_{{\mathbf{F} }_{{q}^{m} } / {\mathbf{F} }_{q} } ({x}^{j} )$. This answers an open problem raised by Zieve in 2010. Finally, by using the linear translator, we construct the permutation polynomial of the form ${L}_{1} (x)+ {L}_{2} (\gamma )h(f(x))$ over ${\mathbf{F} }_{{q}^{m} } $, which extends a result of Kyureghyan.


2020 ◽  
Vol 50 (3) ◽  
Author(s):  
Jianhua Wu ◽  
Hai Liu ◽  
Xishun Zhu

In this paper, we propose an image encryption algorithm based on a permutation polynomial over finite fields proposed by the authors. The proposed image encryption process consists of four stages: i) a mapping from pixel gray-levels into finite field, ii) a pre-scrambling of pixels’ positions based on the parameterized permutation polynomial, iii) a symmetric matrix transform over finite fields which completes the operation of diffusion and, iv) a post-scrambling based on the permutation polynomial with different parameters. The parameters used for the polynomial parameterization and for constructing the symmetric matrix are used as cipher keys. Theoretical analysis and simulation demonstrate that the proposed image encryption scheme is feasible with a high efficiency and a strong ability of resisting various common attacks. In addition, there are not any round-off errors in computation over finite fields, thus guaranteeing a strictly lossless image encryption. Due to the intrinsic nonlinearity of permutation polynomials in finite fields, the proposed image encryption system is nonlinear and can resist known-plaintext and chosen-plaintext attacks.


1991 ◽  
Vol 43 (1) ◽  
pp. 141-146 ◽  
Author(s):  
Joachim von zur Gathen

Let q be a prime power, Fq a field with q elements, f ∈ Fq[x] a polynomial of degree n ≥ 1, V(f) = #f(Fq) the number of different values f(α) of f, with α ∈ Fq, and p = q – V(f). It is shown that either ρ = 0 or 4n4 > q or 2pn > q. Hence, if q is “large” and f is not a permutation polynomial, then either n or ρ is “large”.


1987 ◽  
Vol 10 (3) ◽  
pp. 535-543 ◽  
Author(s):  
R. A. Mollin ◽  
C. Small

A polynomialfover a finite fieldFis called a permutation polynomial if the mappingF→Fdefined byfis one-to-one. In this paper we consider the problem of characterizing permutation polynomials; that is, we seek conditions on the coefficients of a polynomial which are necessary and sufficient for it to represent a permutation. We also give some results bearing on a conjecture of Carlitz which says essentially that for any even integerm, the cardinality of finite fields admitting permutation polynomials of degreemis bounded.


2016 ◽  
Vol 15 (07) ◽  
pp. 1650133 ◽  
Author(s):  
Rohit Gupta ◽  
R. K. Sharma

Let [Formula: see text] denotes the finite field of order [Formula: see text] where [Formula: see text] A permutation polynomial [Formula: see text] over [Formula: see text] with [Formula: see text] and [Formula: see text] such that for each [Formula: see text] is a permutation polynomial satisfying [Formula: see text] is called a o-polynomial. In this paper, we determine all o-polynomials up to degree [Formula: see text].


2001 ◽  
Vol 21 (3) ◽  
pp. 412-416 ◽  
Author(s):  
Seunghwan Chang ◽  
June Bok Lee

2012 ◽  
Vol 18 (1) ◽  
pp. 108-122 ◽  
Author(s):  
Henning Stichtenoth ◽  
Alev Topuzoğlu

1993 ◽  
Vol 119 (3) ◽  
pp. 711-711 ◽  
Author(s):  
Da Qing Wan ◽  
Peter Jau-Shyong Shiue ◽  
Ching Shyang Chen

Sign in / Sign up

Export Citation Format

Share Document