Optica Applicata
Latest Publications


TOTAL DOCUMENTS

113
(FIVE YEARS 113)

H-INDEX

0
(FIVE YEARS 0)

Published By Politechnika Wroclawska Oficyna Wydawnicza

0078-5466, 1899-7015

2021 ◽  
Vol 51 (4) ◽  
Author(s):  
Lua Ngo ◽  
Jae-Ho Han

This work presents an automated segmentation method, based on graph theory, which processes superpixels that exhibit spatially similarities in hue and texture pixel groups, rather than individual pixels. The graph shortest path includes a chain of neighboring superpixels which have minimal intensity changes. This method reduces graphics computational complexity because it provides large decreases in the number of vertices as the superpixel size increases. For the starting vertex prediction, the boundary pixel in first column which is included in this starting vertex is predicted by a trained deep neural network formulated as a regression task. By formulating the problem as a regression scheme, the computational burden is decreased in comparison with classifying each pixel in the entire image. This feasibility approach, when applied as a preliminary study in electron microscopy and optical coherence tomography images, demonstrated high measures of accuracy: 0.9670 for the electron microscopy image and 0.9930 for vitreous/nerve-fiber and inner-segment/outer-segment layer segmentations in the optical coherence tomography image.


2021 ◽  
Vol 51 (1) ◽  
Author(s):  
In Young Choi ◽  
Sung Hoon Baik ◽  
Young Soo Choi

A Raman lidar system is able to detect the range of gas distribution and measure the hydrogen gas concentration remotely. This paper discusses the development of a photon counting Raman lidar system for remotely measuring the hydrogen gas concentration. To verify the developed photon counting Raman lidar system, experiments were carried out in outdoor conditions. As the results indicate, the developed photon counting Raman lidar system is possible to measure 0.66 to 100 vol% hydrogen gas concentrations at a distance of 30 m. In addition, the measuring average error measured 0.54% and the standard deviation is 2.42% at a distance of 30 m.


2021 ◽  
Vol 51 (3) ◽  
Author(s):  
Huo-Sheng Ye ◽  
Jing-Yi Dai ◽  
Shun-Xi Wen ◽  
Li-Hua Gong ◽  
Wen-Quan Zhang

A color image compression-encryption algorithm by combining quaternion discrete multi-fractional random transform with compressive sensing is investigated, in which the chaos-based fractional orders greatly improve key sensitivity. The original color image is compressed and encrypted with the assistance of compressive sensing, in which the partial Hadamard matrix adopted as a measurement matrix is constructed by iterating Chebyshev map instead of utilizing the entire Guassian matrix as a key. The sparse images are divided into 12 sub-images and then represented as three quaternion signals, which are modulated by the quaternion discrete multi-fractional random transform. The image blocking and the quaternion representation make the proposed cryptosystem avoid additional data extension existing in many transform-based methods. To further improve the level of security, the plaintext-related key streams generated by the 2D logistic-sine-coupling map are adopted to diffuse and confuse the intermediate results simultaneously. Consequently, the final ciphertext image is attained. Simulation results reveal that the proposed cryptosystem is feasible with high security and has strong robustness against various attacks.


2021 ◽  
Vol 51 (2) ◽  
Author(s):  
Yingchun Wu, , , , ◽  
Xing Cheng ◽  
Jie Liang ◽  
Anhong Wang ◽  
Xianling Zhao

Traditional light field all-in-focus image fusion algorithms are based on the digital refocusing technique. Multi-focused images converted from one single light field image are used to calculate the all-in-focus image and the light field spatial information is used to accomplish the sharpness evaluation. Analyzing the 4D light field from another perspective, an all-in-focus image fusion algorithm based on angular information is presented in this paper. In the proposed method, the 4D light field data are fused directly and a macro-pixel energy difference function based on angular information is established to accomplish the sharpness evaluation. Then the fused 4D data is guided by the dimension increased central sub-aperture image to obtain the refined 4D data. Finally, the all-in-focus image is calculated by integrating the refined 4D light field data. Experimental results show that the fused images calculated by the proposed method have higher visual quality. Quantitative evaluation results also demonstrate the performance of the proposed algorithm. With the light field angular information, the image feature-based index and human perception inspired index of the fused image are improved.


2021 ◽  
Vol 51 (1) ◽  
Author(s):  
Rafał Antoni Bogaczewicz ◽  
Ewa Popko ◽  
Katarzyna Renata Gwóźdź

Recently it has been found that the heterostructures of n-ZnO/p-Si are promising photovoltaic alternatives to silicon homojunctions. It is well known that the energy band diagram of a heterostructure is crucial for the understanding of its operation. This paper analyzes the ZnO/p-Si heterostructure band by using free AMPS-1D computer program simulations. The obtained numerical results are compared with theoretical calculations based on the depletion region approximation model and the Poisson’s equation for electric potential. The results of the simulation are also compared with the experimental C-V characteristics of the test n-ZnO/p-Si heterostructure. The simulated C-V characteristics is qualitatively consistent with the experimental C-V curve, which confirms the correctness of the determined band diagram of the n-ZnO/p-Si heterostructure.


2021 ◽  
Vol 51 (4) ◽  
Author(s):  
Xingchun Chu ◽  
Rongjiang Liu ◽  
Xiang Wang ◽  
Zhongxiang Han ◽  
Yanhui Ni

Finite energy Airy beams (FEAB) generated in laboratory have a short non-diffracting propagation distance (NDPD), which restricts its application in laser communication, laser detection and other fields. Effects of optical Airy transform (OAT) on NDPD of FEAB is analyzed. By comparing the theoretical formulas of the FEAB before and after the OAT, we find that when the transform parameter α of the OAT is larger than zero, the transverse scaling factor of the transformed FEAB is greater than that before the transformation, while the transformed exponential decay factor is smaller than that before the transformation. Using the Huygens–Fresnel diffractive integral, we derive the propagation formula of the transformed FEAB. Initial intensity distribution of FEAB before and after the OAT is compared. Propagation dynamics of the transformed FEAB with different α is numerically simulated and its NDPD is quantitatively evaluated. Results show that: with the increase of α, side lobes of the transformed FEAB increase, its main lobe and side lobes become wider than that before the transformation, and the inclination of the propagation trajectory decreases. When α is greater than half of the transverse scaling factor, the NDPD of the transformed FEAB increases rapidly.


2021 ◽  
Vol 51 (3) ◽  
Author(s):  
Hong Li ◽  
Haoyue Zhang ◽  
Yanming Song ◽  
Fanyong Meng ◽  
Lianqing Zhu

A novel technology for the simultaneous and independent measurement of dual parameters is proposed and experimented. By using a single fiber Bragg grating half-pasted by 1C-LV epoxy under different curing conditions, the sensor structure is designed such that the reflective single-peak spectrum splits into a twin-peak spectrum, which makes the FBG spectrum form a natural spectral peak splitting bias. A measurement limitation exists in the FBG sensor packaging at room temperature, which can be solved by the high-temperature cured packaging method. To verify the validity of the theory and methodology, the experimental system is used. In the range from –1000 to +1000 με and from 35 to 75°C, the Bragg wavelength change is relative linear to the strain and temperature. The temperature and strain variations can be independently and simultaneously measured using the split peak, and the deviations of the FBG sensor are ±1°C and ±5 με, respectively. This single FBG sensor can realize dual-parameter measurement, which is valuable for narrow-space health monitoring.


2021 ◽  
Vol 51 (3) ◽  
Author(s):  
Hussein Salloom ◽  
Tagreed Hamad

In this work, laser-induced breakdown spectroscopy (LIBS) analysis is optimized for direct estimation of elemental composition, thermal conductivity and hardness for Ni-Cr-Nb alloys. These alloys were chosen with a variable elemental content of niobium and chromium. The influence of laser energy and shot numbers on measuring line intensity was investigated. Based on the ratio between two spectral lines, calibration curves were formed to estimate the element concentration and LIBS results were confirmed with related energy-dispersive X-ray spectroscopy (EDS) data. Hardness and thermal conductivity estimation using LIBS were done by measuring the ratio between two spectral lines, plasma excitation temperature and electron density for different samples. Semi-empirical formulas correlated hardness and thermal conductivity with plasma temperature were established.


2021 ◽  
Vol 51 (2) ◽  
Author(s):  
Zhiru Huang ◽  
Qihang Dai ◽  
Xiaoling Ji ◽  
Tao Wang

The far-zone behavior of polychromatic light waves on scattering from an anisotrophic semi-soft boundary medium with spectral dependence was considered, and the spectral density and the spectral degree of coherence of the far-zone scattered field were investigated. It is shown that the distributions of the spectral density and the spectral degree of coherence of scattered field are closely related with the rms width, the center wavelength, and the maximum value of the center wavelength of the scattering potential of the scattering medium.


2021 ◽  
Vol 51 (2) ◽  
Author(s):  
Milan S. Kovacevic ◽  
Marko M. Milosevic ◽  
Ljubica Kuzmanovic ◽  
Alexandar Djordjevich

A fiber optic device sensitive to humidity is detailed and modelled by ray tracing based on Monte Carlo simulation. The device is intended primarily for monitoring humidity in the microenvironment of wounds without removing the wound dressing and thus disturbing the wound-healing process. To produce the sensor, cladding is removed from a segment of its polymer-fiber and mesoporous SiO2 nanoparticles are deposited in the exposed zone. This introduces an additional light-transmission loss. The extent of such loss is related to the relative humidity of the environment. Such a relationship, embodying the essence of the sensor’s modulation principle, is examined in this paper by ray tracing based on Monte Carlo simulation. The sensor is explained in detail and its performance is characterised.


Sign in / Sign up

Export Citation Format

Share Document