scholarly journals On the Generalized Roundness of Finite Metric Spaces

1995 ◽  
Vol 192 (2) ◽  
pp. 323-334 ◽  
Author(s):  
A. Weston
2013 ◽  
Vol 56 (3) ◽  
pp. 519-535 ◽  
Author(s):  
TIMOTHY FAVER ◽  
KATELYNN KOCHALSKI ◽  
MATHAV KISHORE MURUGAN ◽  
HEIDI VERHEGGEN ◽  
ELIZABETH WESSON ◽  
...  

AbstractMotivated by a classical theorem of Schoenberg, we prove that an n + 1 point finite metric space has strict 2-negative type if and only if it can be isometrically embedded in the Euclidean space $\mathbb{R}^{n}$ of dimension n but it cannot be isometrically embedded in any Euclidean space $\mathbb{R}^{r}$ of dimension r < n. We use this result as a technical tool to study ‘roundness’ properties of additive metrics with a particular focus on ultrametrics and leaf metrics. The following conditions are shown to be equivalent for a metric space (X,d): (1) X is ultrametric, (2) X has infinite roundness, (3) X has infinite generalized roundness, (4) X has strict p-negative type for all p ≥ 0 and (5) X admits no p-polygonal equality for any p ≥ 0. As all ultrametric spaces have strict 2-negative type by (4) we thus obtain a short new proof of Lemin's theorem: Every finite ultrametric space is isometrically embeddable into some Euclidean space as an affinely independent set. Motivated by a question of Lemin, Shkarin introduced the class $\mathcal{M}$ of all finite metric spaces that may be isometrically embedded into ℓ2 as an affinely independent set. The results of this paper show that Shkarin's class $\mathcal{M}$ consists of all finite metric spaces of strict 2-negative type. We also note that it is possible to construct an additive metric space whose generalized roundness is exactly ℘ for each ℘ ∈ [1, ∞].


2019 ◽  
Vol 72 (3) ◽  
pp. 774-804 ◽  
Author(s):  
Stephen J. Dilworth ◽  
Denka Kutzarova ◽  
Mikhail I. Ostrovskii

AbstractMain results of the paper are as follows:(1) For any finite metric space $M$ the Lipschitz-free space on $M$ contains a large well-complemented subspace that is close to $\ell _{1}^{n}$.(2) Lipschitz-free spaces on large classes of recursively defined sequences of graphs are not uniformly isomorphic to $\ell _{1}^{n}$ of the corresponding dimensions. These classes contain well-known families of diamond graphs and Laakso graphs.Interesting features of our approach are: (a) We consider averages over groups of cycle-preserving bijections of edge sets of graphs that are not necessarily graph automorphisms. (b) In the case of such recursive families of graphs as Laakso graphs, we use the well-known approach of Grünbaum (1960) and Rudin (1962) for estimating projection constants in the case where invariant projections are not unique.


2019 ◽  
Vol 474 (1) ◽  
pp. 666-673 ◽  
Author(s):  
Sofiya Ostrovska ◽  
Mikhail I. Ostrovskii

2016 ◽  
Vol 68 (4) ◽  
pp. 876-907 ◽  
Author(s):  
Mikhail Ostrovskii ◽  
Beata Randrianantoanina

AbstractFor a fixed K > 1 and n ∈ ℕ, n ≫ 1, we study metric spaces which admit embeddings with distortion ≤ K into each n-dimensional Banach space. Classical examples include spaces embeddable into log n-dimensional Euclidean spaces, and equilateral spaces.We prove that good embeddability properties are preserved under the operation of metric composition of metric spaces. In particular, we prove that n-point ultrametrics can be embedded with uniformly bounded distortions into arbitrary Banach spaces of dimension log n.The main result of the paper is a new example of a family of finite metric spaces which are not metric compositions of classical examples and which do embed with uniformly bounded distortion into any Banach space of dimension n. This partially answers a question of G. Schechtman.


Sign in / Sign up

Export Citation Format

Share Document