isometric embeddings
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 26)

H-INDEX

13
(FIVE YEARS 2)

Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 477
Author(s):  
Sergey Paston ◽  
Taisiia Zaitseva

Nontrivial isometric embeddings for flat metrics (i.e., those which are not just planes in the ambient space) can serve as useful tools in the description of gravity in the embedding gravity approach. Such embeddings can additionally be required to have the same symmetry as the metric. On the other hand, it is possible to require the embedding to be unfolded so that the surface in the ambient space would occupy the subspace of the maximum possible dimension. In the weak gravitational field limit, such a requirement together with a large enough dimension of the ambient space makes embedding gravity equivalent to general relativity, while at lower dimensions it guarantees the linearizability of the equations of motion. We discuss symmetric embeddings for the metrics of flat Euclidean three-dimensional space and Minkowski space. We propose the method of sequential surface deformations for the construction of unfolded embeddings. We use it to construct such embeddings of flat Euclidean three-dimensional space and Minkowski space, which can be used to analyze the equations of motion of embedding gravity.


Author(s):  
Andreas Bernig ◽  
Dmitry Faifman ◽  
Gil Solanes

AbstractThe recently introduced Lipschitz–Killing curvature measures on pseudo-Riemannian manifolds satisfy a Weyl principle, i.e. are invariant under isometric embeddings. We show that they are uniquely characterized by this property. We apply this characterization to prove a Künneth-type formula for Lipschitz–Killing curvature measures, and to classify the invariant generalized valuations and curvature measures on all isotropic pseudo-Riemannian space forms.


Author(s):  
Christian Goodbrake ◽  
Alain Goriely ◽  
Arash Yavari

A central tool of nonlinear anelasticity is the multiplicative decomposition of the deformation tensor that assumes that the deformation gradient can be decomposed as a product of an elastic and an anelastic tensor. It is usually justified by the existence of an intermediate configuration. Yet, this configuration cannot exist in Euclidean space, in general, and the mathematical basis for this assumption is on unsatisfactory ground. Here, we derive a sufficient condition for the existence of global intermediate configurations, starting from a multiplicative decomposition of the deformation gradient. We show that these global configurations are unique up to isometry. We examine the result of isometrically embedding these configurations in higher-dimensional Euclidean space, and construct multiplicative decompositions of the deformation gradient reflecting these embeddings. As an example, for a family of radially symmetric deformations, we construct isometric embeddings of the resulting intermediate configurations, and compute the residual stress fields explicitly.


2020 ◽  
Vol 1697 ◽  
pp. 012077
Author(s):  
A A Sheykin ◽  
M V Markov ◽  
Ya A Fedulov ◽  
S A Paston

2020 ◽  
Vol 374 ◽  
pp. 107388
Author(s):  
Xiaojun Huang ◽  
Jin Lu ◽  
Xiaomin Tang ◽  
Ming Xiao

Sign in / Sign up

Export Citation Format

Share Document