free space
Recently Published Documents





2022 ◽  
Vol 150 ◽  
pp. 106880
Yin Xiao ◽  
Lina Zhou ◽  
Zilan Pan ◽  
Yonggui Cao ◽  
Mo Yang ◽  

Huu Ai Duong ◽  
Van Loi Nguyen ◽  
Khanh Ty Luong

<span>The continuous development of internet of things (IoT) technology enables many devices to be interconnected through the external environment. Meanwhile, 5G technology provides an enhanced quality of services with high data transmission rates, requiring IoT implementation in the 5G architecture. Free-space optical communication (FSO) is considered a promising technique that can provide high-speed communication links, so FSO is an optimal choice for wireless networks to fulfill the full potential of 5G technology, providing speeds of 100 Gb/s or more. By implementing 5G features in IoT, IoT coverage and performance will be enhanced by using FSO models. Therefore, the paper proposed and investigated the multiple-input and multiple-output/free-space optical communication (MIMO/FSO) model using subcarrier quadrature amplitude modulation (SC-QAM) and relay stations over atmospheric turbulence channels by log-normal and gamma-gamma distribution under different turbulence conditions. The performance is examined based on the average channel capacity (ACC), which is expressed in terms of average spectral efficiency (ASE) parameters while changing the different parameters of the model. The mathematical formulas of ACC for atmospheric turbulence cases are calculated and discussed the influence of turbulence strength, the different number of relay stations, misalignment effects, and different MIMO configurations.</span>

2022 ◽  
Vol 0 (0) ◽  
Zhongli Yi ◽  
Fuzhai Wang ◽  
Lianjie Jin ◽  
Yueying Zhan

Abstract In this study, we propose an application scheme of free space optical communication technology in INMARSAT, and propose a 1.12 Tbit/s coherent free-space optical (FSO) communication system based on wavelength division multiplexing (WDM) and polarization-multiplexing quadrature phase shift keying (PM-QPSK) modulation technology. Based on optisystem software platform, the spectrum, bit error rate (BER), received power, error vector magnitude (EVM), and receiver sensitivity of the edge and middle channels of the system are analyzed. The simulation results show that the transmission rate and channel capacity of INMARSAT communication system are greatly improved by selecting the channel spacing and transmission environment reasonably.

2022 ◽  
Vol 8 (2) ◽  
Rodion Kononchuk ◽  
Suwun Suwunnarat ◽  
Martin S. Hilario ◽  
Anthony E. Baros ◽  
Brad W. Hoff ◽  

Wide-aperture free-space limiter with enhanced damage threshold provides protection from high-power millimeter-wave radiation.

2022 ◽  
Vol 128 (2) ◽  
D. R. Gozzard ◽  
L. A. Howard ◽  
B. P. Dix-Matthews ◽  
S. F. E. Karpathakis ◽  
C. T. Gravestock ◽  

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Jian Wang ◽  
Jun Liu ◽  
Shuhui Li ◽  
Yifan Zhao ◽  
Jing Du ◽  

Abstract Orbital angular momentum (OAM), which describes tailoring the spatial physical dimension of light waves into a helical phase structure, has given rise to many applications in optical manipulation, microscopy, imaging, metrology, sensing, quantum science, and optical communications. Light beams carrying OAM feature two distinct characteristics, i.e., inherent orthogonality and unbounded states in principle, which are suitable for capacity scaling of optical communications. In this paper, we give an overview of OAM and beyond in free-space optical communications. The fundamentals of OAM, concept of optical communications using OAM, OAM modulation (OAM modulation based on spatial light modulator, high-speed OAM modulation, spatial array modulation), OAM multiplexing (spectrally efficient, high capacity, long distance), OAM multicasting (adaptive multicasting, N-dimensional multicasting), OAM communications in turbulence (adaptive optics, digital signal processing, auto-alignment system), structured light communications beyond OAM (Bessel beams, Airy beams, vector beams), diverse and robust communications using OAM and beyond (multiple scenes, turbulence-resilient communications, intelligent communications) are comprehensively reviewed. The prospects and challenges of optical communications using OAM and beyond are also discussed at the end. In the future, there will be more opportunities in exploiting extensive advanced applications from OAM beams to more general structured light.

2022 ◽  
Vol 11 (1) ◽  
pp. 56
Xiaorong Gao ◽  
Haowen Yan ◽  
Xiaomin Lu ◽  
Pengbo Li

The major reason that the fully automated generalization of residential areas has not been achieved to date is that it is difficult to acquire the knowledge that is required for automated generalization and for the calculation of spatial similarity degrees between map objects at different scales. Furthermore, little attention has been given to generalization methods with a scale reduction that is larger than two-fold. To fill this gap, this article develops a hybrid approach that combines two existing methods to generalize residential areas that range from 1:10,000 to 1:50,000. The two existing methods are Boffet’s method for free space acquisition and kernel density analysis for city hotspot detection. Using both methods, the proposed approach follows a knowledge-based framework by implementing map analysis and spatial similarity measurements in a multiscale map space. First, the knowledge required for residential area generalization is obtained by analyzing multiscale residential areas and their corresponding contributions. Second, residential area generalization is divided into two subprocesses: free space acquisition and urban area outer boundary determination. Then, important parameters for the two subprocesses are obtained through map analysis and similarity measurements, reflecting the knowledge that is hidden in the cartographer’s mind. Using this acquired knowledge, complete generalization steps are formed. The proposed approach is tested using multiscale datasets from Lanzhou City. The experimental results demonstrate that our method is better than the traditional methods in terms of location precision and actuality. The approach is robust, comparatively insensitive to the noise of the small buildings beyond urban areas, and easy to implement in GIS software.

2022 ◽  
Negar Omidi ◽  
Golnaz Houshmand ◽  
Hamidreza Pourhosseini ◽  
Ali Hosseinsabet

2022 ◽  
Vol 12 (1) ◽  
Hai-Han Lu ◽  
Chung-Yi Li ◽  
Wen-Shing Tsai ◽  
Poh-Suan Chang ◽  
Yan-Yu Lin ◽  

AbstractA two-way 224-Gbit/s four-level pulse amplitude modulation (PAM4)-based fibre-free-space optical (FSO) converged system through a 25-km single-mode fibre (SMF) transport with 500-m free-space transmission is successfully constructed, which adopts injection-locked vertical-cavity surface-emitting lasers with polarisation-multiplexing mechanism for a demonstration. Compared with one-way transmission, two-way transmission is an attractive architecture for fibre-FSO converged system. Two-way transmission over SMF transport with free-space transmission not only reduces the required number of fibres and the setups of free-space transmission, but also provides the advantage of capacity doubling. Incorporating dual-wavelength four-level pulse amplitude modulation (PAM4) modulation with polarisation-multiplexing mechanism, the transmission capacity of fibre-FSO converged system is significantly enhanced to 224 Gbit/s (56 Gbit/s PAM4/wavelength × 2-wavelength × 2-polarisation) for downlink/uplink transmission. Bit error rate and PAM4 eye diagrams (downstream/upstream) perform well over 25-km SMF transport with 500-m free-space transmission. This proposed two-way fibre-FSO converged system is a prominent one not only because of its development in the integration of fibre backbone with optical wireless extension, but also because of its advantage in two-way transmission for affording high downlink/uplink data rate with good transmission performance.

Sign in / Sign up

Export Citation Format

Share Document