scholarly journals On the Generalized Hyers–Ulam–Rassias Stability of an n-Dimensional Quadratic Functional Equation

2001 ◽  
Vol 258 (1) ◽  
pp. 183-193 ◽  
Author(s):  
Jae-Hyeong Bae ◽  
Kil-Woung Jun
2011 ◽  
Vol 403-408 ◽  
pp. 879-887
Author(s):  
K. Ravi ◽  
P. Narasimman

In this paper, we obtain the general solution and investigate the Hyers-Ulam-Rassias stability of the Generalized Quadratic functional equation in non-Archimedean fuzzy normed spaces.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1117
Author(s):  
Maryam Ramezani ◽  
Ozgur Ege ◽  
Manuel De la Sen

In this study, our goal is to apply a new fixed point method to prove the Hyers-Ulam-Rassias stability of a quadratic functional equation in normed spaces which are not necessarily Banach spaces. The results of the present paper improve and extend some previous results.


2017 ◽  
Vol 67 (1) ◽  
Author(s):  
Iz-iddine EL-Fassi ◽  
Samir Kabbaj

AbstractIn this paper, we establish the Hyers-Ulam-Rassias stability of the quadratic functional equation of Pexiderized type


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Xiuzhong Yang

The Hyers-Ulam-Rassias stability of quadratic functional equationf(2x+y)+f(2x-y)=f(x+y)+f(x-y)+6f(x)and orthogonal stability of the Pexiderized quadratic functional equationf(x+y)+f(x-y)=2g(x)+2h(y)inF-spaces are proved.


Filomat ◽  
2021 ◽  
Vol 35 (8) ◽  
pp. 2693-2704
Author(s):  
Gastão Bettencourt ◽  
Sérgio Mendes

Let G be an abelian group and suppose that X is a non-Archimedean Banach space. We study Hyers-Ulam-Rassias stability for the functional equation of quadratic type f(x+y+z)+ f(x)+f(y)+f(z)=f(x+y)+f(y+z)+ f(z+x) where f : G ? X is a map.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Ehsan Movahednia

The aim of this paper is to investigate fuzzy Hyers-Ulam-Rassias stability of the general case of quadratic functional equation where and fixed integers with . These functional equations are equivalent. This has been proven by Ulam, 1964.


Sign in / Sign up

Export Citation Format

Share Document