scholarly journals On Modular forms of Weight (6n + 1)/5 Satisfying a Certain Differential Equation

Author(s):  
Masanobu Kaneko
2021 ◽  
Vol 7 (3) ◽  
Author(s):  
Christina Roehrig

AbstractThe modular transformation behavior of theta series for indefinite quadratic forms is well understood in the case of elliptic modular forms due to Vignéras, who deduced that solving a differential equation of second order serves as a criterion for modularity. In this paper, we will give a generalization of this result to Siegel theta series.


Author(s):  
HICHAM SABER ◽  
ABDELLAH SEBBAR

Abstract We answer some questions in a paper by Kaneko and Koike [‘On modular forms arising from a differential equation of hypergeometric type’, Ramanujan J.7(1–3) (2003), 145–164] about the modularity of the solutions of a certain differential equation. In particular, we provide a number-theoretic explanation of why the modularity of the solutions occurs in some cases and does not occur in others. This also proves their conjecture on the completeness of the list of modular solutions after adding some missing cases.


2006 ◽  
Vol 11 (1) ◽  
pp. 13-32 ◽  
Author(s):  
B. Bandyrskii ◽  
I. Lazurchak ◽  
V. Makarov ◽  
M. Sapagovas

The paper deals with numerical methods for eigenvalue problem for the second order ordinary differential operator with variable coefficient subject to nonlocal integral condition. FD-method (functional-discrete method) is derived and analyzed for calculating of eigenvalues, particulary complex eigenvalues. The convergence of FD-method is proved. Finally numerical procedures are suggested and computational results are schown.


Sign in / Sign up

Export Citation Format

Share Document