order differential equation
Recently Published Documents


TOTAL DOCUMENTS

1035
(FIVE YEARS 205)

H-INDEX

28
(FIVE YEARS 5)

Author(s):  
Sneha Dey ◽  
◽  
A. Ghorai ◽  

Exploration of dynamics of raindrops is one of the simple yet most complicated mechanical problems. Mass accretion from moist air during the motion of raindrop through resistive medium holds an arbitrary power law equation. Its integral part is the change of shape, terminal motions and terminal solutions, etc. Classical Newtonian formalism is used to formulate a mathematical model of generalized first order differential equation. We have discussed about the terminal velocity of raindrop and its variation with the extensive use of python program and library. It is found that terminal velocity 𝐯𝐓𝐜𝛂𝛃 is achieved within 20 seconds where 𝛂=, 𝛃=(𝟎,𝟏) and 𝐧=𝟎,𝟏,𝟐,𝟑,𝟒,…. Its variations due to mass accretion roughly follows the earlier predicted range 𝐠/𝟕 to 𝐠/𝟑.


Author(s):  
Sneha Dey ◽  
◽  
Dr. A. Ghorai ◽  

The mass accretion of a raindrop in different layers of the atmosphere is not dealt with so far. A comprehensive brief study of the motion of raindrops through the atmosphere (i) without mass accretion, (ii) with mass accretion and (iii) finally pressure variation in the atmosphere with altitude using Bernoulli’s equation is illustrated. Acquirement of mass from moist air is mass accretion and mass accretion during the motion of raindrop through resistive medium holds an arbitrary power-law equation. Bernoulli’s equation when applied to it, the generalized first-order differential equation is reduced to a polynomial equation. Results show a single intersecting point of approximate terminal velocity 1 m/s and mass 10-06 mg as illustrated. Terminal velocity is achieved within 25 sec. There is the approximate exponential growth of terminal velocity. An increase in momentum is due to mass accretion during motion. Various conditions of no mass accretion and mass accretion show the same result while for atmospheric effect using Bernoulli’s equation the first-order differential equation reduces to a polynomial equation.


2022 ◽  
Author(s):  
Pawan Kumar Singh ◽  
Alok Kumar Pandey ◽  
Anushka Chouhan

Abstract The increase in surface temperature and CO2 emissions are two of the most important issues in climate studies and global warming. The ‘Global Emissions 2021’ report identifies the six biggest contributors to CO2­ emissions; China, USA, India, Russia, Japan, and Germany. The current study projects the increase in surface temperature and the CO­2 emissions of these six countries by 2028. The EGM (1,1,α,θ) grey model is an even form of the model with a first order differential equation, that has one variable and a weightage background value that contains conformable fractional accumulation. The results show that while the CO2 emissions for Japan, Germany, USA and Russia show a downward projection, they are expected to increase in India and remain nearly constant in China by 2028. The surface temperature has been projected to increase at a significant rate in all these countries. By comparing with the EGM (1,1) grey model, the results show that the EGM (1,1, α, θ) model performs better in both in-sample and out-of-sample forecasting. The paper also puts forward some policy suggestions to mitigate, manage and reduce increases in surface temperature as well as CO2 emissions.


2021 ◽  
Vol 104 (4) ◽  
pp. 103-109
Author(s):  
A.A. Kalybay ◽  
◽  
A.O. Baiarystanov ◽  

The oscillatory theory of fourth order differential equations has not yet been developed well enough. The results are known only for the case when the coefficients of differential equations are power functions. This fact can be explained by the absence of simple effective methods for studying such higher order equations. In this paper, the authors investigate the oscillatory properties of a class of fourth order differential equations by the variational method. The presented variational method allows to consider any arbitrary functions as coefficients, and our main results depend on their boundary behavior in neighborhoods of zero and infinity. Moreover, this variational method is based on the validity of a certain weighted differential inequality of Hardy type, which is of independent interest. The authors of the article also find two-sided estimates of the least constant for this inequality, which are especially important for their applications to the main results on the oscillatory properties of these differential equations.


2021 ◽  
Author(s):  
Suo Qiangbo ◽  
Yiping Han ◽  
Zhiwei Cui

Abstract The self-focusing properties of the Laguerre-Gaussian (LG) beam in nonlinear plasma, characterized by significant collisional or ponderomotive nonlinearity have been explored. The second-order differential equation of the beam width is established from Maxwell’s equations with Wentzel–Kramers–Brillouin (WKB) and paraxial like approximation. The effect of the vortex charge number, intensity parameter and plasma temperature on the self-focusing properties of the Laguerre-Gaussian beam has been investigated.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Nabil Sellami ◽  
Romaissa Mellal ◽  
Bahri Belkacem Cherif ◽  
Sahar Ahmed Idris

We study the limit cycles of the fifth-order differential equation x ⋅ ⋅ ⋅ ⋅ ⋅ − e x ⃜ − d x ⃛ − c x ¨ − b x ˙ − a x = ε F x , x ˙ , x ¨ , x ⋯ , x ⃜ with a = λ μ δ , b = − λ μ + λ δ + μ δ , c = λ + μ + δ + λ μ δ , d = − 1 + λ μ + λ δ + μ δ , e = λ + μ + δ , where ε is a small enough real parameter, λ , μ , and δ are real parameters, and F ∈ C 2 is a nonlinear function. Using the averaging theory of first order, we provide sufficient conditions for the existence of limit cycles of this equation.


2021 ◽  
Vol 5 (4) ◽  
pp. 246
Author(s):  
Maryam Al-Kandari ◽  
Omar Bazighifan

The objective of this work is to study some new oscillation criteria for even-order differential equation with neutral term rxzn−1xγ′+qxyγζx=0. By using the Riccati substitution and comparison technique, several new oscillation criteria are obtained for the studied equation. Our results generalize and improve some known results in the literature. We offer some examples to illustrate the feasibility of our conditions.


Author(s):  
Yu. G. Smirnov ◽  
◽  
V. Yu. Martynova ◽  
M. A. Moskaleva ◽  
A. V. Tikhonravov ◽  
...  

A modified method of separation of variables is proposed for solving the direct problem of diffraction of electromagnetic wave by multilayer dielectric gratings (MDG). To apply this method, it is necessary to solve a one-dimensional eigenvalue problem for a 2nd- order differential equation on a segment with piecewise constant coefficients. The accuracy of the method is verified by comparison with the results obtained by the commercially available RCWA method. It is demonstrated that the method can be applied not only to commonly used MDG elements with one line in a grating period but also to potentially promising MDG elements with several different lines in a grating period.


Author(s):  
Dildar Ahmad ◽  
Amjad Ali ◽  
Ibrahim Mahariq ◽  
Ghaus ur Rahman ◽  
Kamal Shah

Abstract The present research work is basically devoted to construction of a fractional order differential equation with time delay. Initially, integral representation is given to solution of the underline problem. Afterwards, operator form of solution is studied under some auxiliary hypothesis. Since uniqueness of solution is required, therefore we also provide results for exploring the uniqueness of solution for the underlying model. Using Lebesgue dominated convergence theorem and some other results from analysis, this work provides results devoted to existence of at least one solution. Also, for investigating the nature of solution for the proposed model, we study different kind of stability analysis. These stability related results show, how the solution behave with time. At the end of the article, we illustrate the obtained results via some examples.


Sign in / Sign up

Export Citation Format

Share Document