Rough Approximation Operators in Covering Approximation Spaces

Author(s):  
Tong-Jun Li
2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Xiaoli He ◽  
Yanhong She

In this paper, we mainly investigate the equivalence between multigranulation approximation space and single-granulation approximation space from the lattice-theoretic viewpoint. It is proved that multigranulation approximation space is equivalent to single-granulation approximation space if and only if the pair of multigranulation rough approximation operators(Σi=1nRi¯,Σi=1nRi_)forms an order-preserving Galois connection, if and only if the collection of lower (resp., upper) definable sets forms an (resp., union) intersection structure, if and only if the collection of multigranulation upper (lower) definable sets forms a distributive lattice whenn=2, and if and only if∀X⊆U,  Σi=1nRi_(X)=∩i=1nRi_(X). The obtained results help us gain more insights into the mathematical structure of multigranulation approximation spaces.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Guangji Yu

This paper is devoted to the study of axiomatic characterizations of IVF rough approximation operators. IVF approximation spaces are investigated. The fact that different IVF operators satisfy some axioms to guarantee the existence of different types of IVF relations which produce the same operators is proved and then IVF rough approximation operators are characterized by axioms.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 164
Author(s):  
Songsong Dai

This paper studies rough approximation via join and meet on a complete orthomodular lattice. Different from Boolean algebra, the distributive law of join over meet does not hold in orthomodular lattices. Some properties of rough approximation rely on the distributive law. Furthermore, we study the relationship among the distributive law, rough approximation and orthomodular lattice-valued relation.


Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 417 ◽  
Author(s):  
Hu Zhao ◽  
Hong-Ying Zhang

As a generalization of single value neutrosophic rough sets, the concept of multi-granulation neutrosophic rough sets was proposed by Bo et al., and some basic properties of the pessimistic (optimistic) multigranulation neutrosophic rough approximation operators were studied. However, they did not do a comprehensive study on the algebraic structure of the pessimistic (optimistic) multigranulation neutrosophic rough approximation operators. In the present paper, we will provide the lattice structure of the pessimistic multigranulation neutrosophic rough approximation operators. In particular, in the one-dimensional case, for special neutrosophic relations, the completely lattice isomorphic relationship between upper neutrosophic rough approximation operators and lower neutrosophic rough approximation operators is proved.


Sign in / Sign up

Export Citation Format

Share Document