Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control

Author(s):  
Michael Hinze ◽  
Stefan Volkwein
2018 ◽  
Vol 69 (4) ◽  
pp. 279-285 ◽  
Author(s):  
Satyavir Singh ◽  
M Abid Bazaz ◽  
Shahkar Ahmad Nahvi

Abstract This paper addresses the issue of offline and online computational cost reduction of the proper orthogonal decomposition (POD) which is a popular nonlinear model order reduction (MOR) technique. Online computational cost is reduced by using the discrete empirical interpolation method (DEIM), which reduces the complexity of evaluating the nonlinear term of the reduced model to a cost proportional to the number of reduced variables obtained by POD: this is the POD-DEIM approach. Offline computational cost is reduced by generating an approximate snapshot-ensemble of the nonlinear dynamical system, consequently, completely avoiding the need to simulate the full-order system. Two snapshot ensembles: one of the states and the other of the nonlinear function are obtained by simulating the successive linearization of the original nonlinear system. The proposed technique is applied to two benchmark large-scale nonlinear dynamical systems and clearly demonstrates comprehensive savings in computational cost and time with insignificant or no deterioration in performance.


Author(s):  
David J. J. Toal

Traditional multi-fidelity surrogate models require that the output of the low fidelity model be reasonably well correlated with the high fidelity model and will only predict scalar responses. The following paper explores the potential of a novel multi-fidelity surrogate modelling scheme employing Gappy Proper Orthogonal Decomposition (G-POD) which is demonstrated to accurately predict the response of the entire computational domain thus improving optimization and uncertainty quantification performance over both traditional single and multi-fidelity surrogate modelling schemes.


Sign in / Sign up

Export Citation Format

Share Document