nonlinear dynamical system
Recently Published Documents


TOTAL DOCUMENTS

426
(FIVE YEARS 91)

H-INDEX

27
(FIVE YEARS 4)

2022 ◽  
Vol 20 ◽  
pp. 324-330
Author(s):  
Rhouma Mlayeh

The purpose of this paper is to stabilize the annular pressure profile throughout the wellbore continuously while drilling. A new nonlinear dynamical system is developed and a controller is designed to stabilize the annular pressure and achieve asymptotic tracking by applying feedback control of the main pumps. Hence, the paper studies the control design for the well known Managed Pressure Drilling system (MPD). MPD provides a closedloop drilling process in which pore pressure, formation fracture pressure, and bottomhole pressure are balanced and managed at the surface. Although, responses must provide a solution for critical downhole pressures to preserve drilling efficiency and safety. Our MPD scheme is elaborated in reference to a nontrivial backstepping control procedure and the effectiveness of the proposed control laws are shown by simulations.


2022 ◽  
pp. 105151
Author(s):  
Azhar Bashir ◽  
Aly R. Seadawy ◽  
Syed T.R. Rizvi ◽  
Ijaz Ali ◽  
Saeed Althubiti

2021 ◽  
Author(s):  
Hermann Moisl

Abstract This paper proposes a model for implementation of intrinsic natural language sentence meaning in a physical language understanding system, where 'intrinsic' is understood as 'independent of meaning ascription by system-external observers'. The proposal is that intrinsic meaning can be implemented as a point attractor in the state space of a nonlinear dynamical system with feedback which is generated by temporally sequenced inputs. It is motivated by John Searle's well known (1980) critique of the then-standard and currently still influential Computational Theory of Mind (CTM), the essence of which was that CTM representations lack intrinsic meaning because that meaning is dependent on ascription by an observer. The proposed dynamical model comprises a collection of interacting artificial neural networks, and constitutes a radical simplification of the principle of compositional phrase structure which is at the heart of the current standard view of sentence semantics because it is computationally interpretable as a finite state machine.


Author(s):  
Najmaddin Abo Mosali ◽  
◽  
Syariful Syafiq Shamsudin ◽  

It can be challenging to develop a controller using conventional techniques for a plant with a linear or nonlinear dynamical system or model uncertainty. Model adaptive control is a new alternative to classical control techniques and a simple way to update controller parameters. Because model reference adaptive control is unable to anticipate the state in real time if the state observer is not designed with, we will review some of the most major disadvantages of the most commonly used design techniques without state observer in this work.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sunil Kumar ◽  
R.P. Chauhan ◽  
Shaher Momani ◽  
Samir Hadid

Purpose This paper aims to study the complex behavior of a dynamical system using fractional and fractal-fractional (FF) derivative operators. The non-classical derivatives are extremely useful for investigating the hidden behavior of the systems. The Atangana–Baleanu (AB) and Caputo–Fabrizio (CF) derivatives are considered for the fractional structure of the model. Further, to add more complexity, the authors have taken the system with a CF fractal-fractional derivative having an exponential kernel. The active control technique is also considered for chaos control. Design/methodology/approach The systems under consideration are solved numerically. The authors show the Adams-type predictor-corrector scheme for the AB model and the Adams–Bashforth scheme for the CF model. The convergence and stability results are given for the numerical scheme. A numerical scheme for the FF model is also presented. Further, an active control scheme is used for chaos control and synchronization of the systems. Findings Simulations of the obtained solutions are displayed via graphics. The proposed system exhibits a very complex phenomenon known as chaos. The importance of the fractional and fractal order can be seen in the presented graphics. Furthermore, chaos control and synchronization between two identical fractional-order systems are achieved. Originality/value This paper mentioned the complex behavior of a dynamical system with fractional and fractal-fractional operators. Chaos control and synchronization using active control are also described.


Author(s):  
Megumi Akai-Kasaya ◽  
Yuki Takeshima ◽  
Shaohua Kan ◽  
Kohei Nakajima ◽  
Takahide Oya ◽  
...  

Abstract Molecular neuromorphic devices are composed of a random and extremely dense network of single-walled carbon nanotubes (SWNTs) complexed with polyoxometalate (POM). Such devices are expected to have the rudimentary ability of reservoir computing (RC), which utilizes signal response dynamics and a certain degree of network complexity. In this study, we performed RC using multiple signals collected from a SWNT/POM random network. The signals showed a nonlinear response with wide diversity originating from the network complexity. The performance of RC was evaluated for various tasks such as waveform reconstruction, a nonlinear autoregressive model, and memory capacity. The obtained results indicated its high capability as a nonlinear dynamical system, capable of information processing incorporated into edge computing in future technologies.


2021 ◽  
Vol 29 (3) ◽  
pp. 201-227
Author(s):  
Sudesh Kumari ◽  
Renu Chugh ◽  
Radu Miculescu

Abstract In this article, we set up a new nonlinear dynamical system which is derived by combining logistic map and sine square map in Mann orbit (a two step feedback process) for ameliorating the stability performance of chaotic system and name it Standard Logistic Sine Square Map (SLSSM). The purpose of this paper is to study the whole dynamical behavior of the proposed map (SLSSM) through various introduced aspects consisting fixed point and stability analysis, time series representation, bifurcation diagram and Lyapunov exponent. Moreover, we show that our map is significantly superior than existing other one dimensional maps. We investigate that the chaotic and complex behavior of SLSSM can be controlled by selecting control parameters carefully. Also, the range of convergence and stability can be made to increase drastically. This new system (SLSSM) might be used to achieve better results in cryptography and to study chaos synchronization.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6108
Author(s):  
Artun Sel ◽  
Bilgehan Sel ◽  
Umit Coskun ◽  
Cosku Kasnakoglu

In this study, two different parameter estimation algorithms are studied and compared. Iterated EKF and a nonlinear optimization algorithm based on on-line search methods are implemented to estimate parameters of a given permanent magnet synchronous motor whose dynamics are assumed to be known and nonlinear. In addition to parameters, initial conditions of the dynamical system are also considered to be unknown, and that comprises one of the differences of those two algorithms. The implementation of those algorithms for the problem and adaptations of the methods are detailed for some other variations of the problem that are reported in the literature. As for the computational aspect of the study, a convexity study is conducted to obtain the spherical neighborhood of the unknown terms around their correct values in the space. To obtain such a range is important to determine convexity properties of the optimization problem given in the estimation problem. In this study, an EKF-based parameter estimation algorithm and an optimization-based method are designed for a given nonlinear dynamical system. The design steps are detailed, and the efficacies and shortcomings of both algorithms are discussed regarding the numerical simulations.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2057
Author(s):  
Alexander N. Pchelintsev

This article discusses the search procedure for Poincaré recurrences to classify solutions on an attractor of a fourth-order nonlinear dynamical system, using a previously developed high-precision numerical method. For the resulting limiting solution, the Lyapunov exponents are calculated, using the modified Benettin’s algorithm to study the stability of the found regime and confirm the type of attractor.


Sign in / Sign up

Export Citation Format

Share Document