scholarly journals On Efficient Application of Implicit Runge-Kutta Methods to Large-Scale Systems of Index 1 Differential-Algebraic Equations

Author(s):  
Gennady Yu. Kulikov ◽  
Alexandra A. Korneva
Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2057
Author(s):  
Juan Tang ◽  
Yongsheng Rao

A new generation of universal tools and languages for modeling and simulation multi-physical domain applications has emerged and became widely accepted; they generate large-scale systems of differential algebraic equations (DAEs) automatically. Motivated by the characteristics of DAE systems with large dimensions, high index or block structures, we first propose a modified Pantelides’ algorithm (MPA) for any high order DAEs based on the Σ matrix, which is similar to Pryce’s Σ method. By introducing a vital parameter vector, a modified Pantelides’ algorithm with parameters has been presented. It leads to a block Pantelides’ algorithm (BPA) naturally which can immediately compute the crucial canonical offsets for whole (coupled) systems with block-triangular form. We illustrate these algorithms by some examples, and preliminary numerical experiments show that the time complexity of BPA can be reduced by at least O(ℓ) compared to the MPA, which is mainly consistent with the results of our analysis.


Author(s):  
Juan Tang ◽  
Yongsheng Rao

A new generation of universal tools and languages for modeling and simulation multi-physical domain applications emerged and became widely accepted, which generate large-scale systems of differential algebraic equations (DAEs) automatically. Motivated by the characteristics of DAEs systems with large dimension, high index or block structures, we first propose a modified Pantelides’ algorithm (MPA) for any high order DAEs based on its Σ matrix, which is similar to Pryce’s Σ method. By introducing a vital parameter vector, a modified Pantelides’ algorithm with parameter has been presented.It leads to a block Pantelides’ algorithm (BPA) naturally which can immediately compute the crucial canonical offsets for whole (coupled) systems with block-triangular form. We illustrate these algorithms by some examples. And numerical experiments show that the time complexity of BPA can be reduced by at least O(ℓ) compared to the MPA, which is mainly consistent with the results of our analysis.


Author(s):  
Jason Mayes ◽  
Mihir Sen

Dynamic analysis of large-scale flow networks is made difficult by the large system of differential-algebraic equations resulting from its modelling. To simplify analysis, the mathematical model must be sufficiently reduced in complexity. For self-similar tree networks, this reduction can be made using the network’s structure in way that can allow simple, analytical solutions. For very large, but finite, networks, analytical solutions are more difficult to obtain. In the infinite limit, however, analysis is sometimes greatly simplified. It is shown that approximating large finite networks as infinite not only simplifies the analysis, but also provides an excellent approximate solution.


Sign in / Sign up

Export Citation Format

Share Document