It is important for mining dump trucks to minimize the weight of the carrier and the load platform while maintaining a sufficient level of their rigidness and strength. This requirement significantly affects the weight of the transported material, the cost of transportation and, consequently, the economic efficiency of mining operations. Processes of loading and dumping of bulk loads, which is transported by dump trucks, make a significant contribution to reducing the service life of the carrier. Therefore, proper consideration of the bulk load dynamics is an important and relevant task. Contemporary systems for calculating the dynamics of solids allow for joint modeling with applications designed to calculate the dispersed body dynamics. This approach helps to obtain adequate loads in the pivots and force links of the model, to analyze the loading of the load platform, to asses the durability of the dump truck elements, to define the geometry of the load platform. In order to perform the simulation, it is required to develop a mathematical model of a dump truck, including all its key elements and subsystems, a model of the bulk load, and a model of the load platform. The purpose of the study is to develop a mathematical model of a mine dump truck to determine the loads in the pivots and force links connected to the carrier and the load platform for the strength calculations and durability analysis. The calculations are made with the combined use of the solids dynamics calculation system and the application to calculate the dynamics of dispersed bodies.