Harmonic Functions and the Reflection Principle

Author(s):  
Theodore W. Gamelin
1990 ◽  
Vol 54 (1) ◽  
pp. 60-76 ◽  
Author(s):  
Dmitry Khavinson ◽  
Harold S. Shapiro

2017 ◽  
Vol 60 (1) ◽  
pp. 146-153 ◽  
Author(s):  
Dmitry Khavinson ◽  
Erik Lundberg ◽  
Hermann Render

AbstractIt is shown that the Dirichlet problem for the slab (a, b) × ℝd with entire boundary data has an entire solution. The proof is based on a generalized Schwarz reflection principle. Moreover, it is shown that for a given entire harmonic function g, the inhomogeneous difference equation h(t + 1, y) − h(t, y) = g(t, y) has an entire harmonic solution h.


2020 ◽  
Vol 64 (10) ◽  
pp. 9-19
Author(s):  
V. V. Volchkov ◽  
Vit. V. Volchkov

2005 ◽  
Vol 11 (4) ◽  
pp. 517-525
Author(s):  
Juris Steprāns

AbstractIt is shown to be consistent with set theory that every set of reals of size ℵ1 is null yet there are ℵ1 planes in Euclidean 3-space whose union is not null. Similar results will be obtained for other geometric objects. The proof relies on results from harmonic analysis about the boundedness of certain harmonic functions and a measure theoretic pigeonhole principle.


1975 ◽  
Vol 56 ◽  
pp. 1-5
Author(s):  
Masaru Hara

Given a harmonic function u on a Riemann surface R, we define a period functionfor every one-dimensional cycle γ of the Riemann surface R. Γx(R) denote the totality of period functions Γu such that harmonic functions u satisfy a boundedness property X. As for X, we let B stand for boundedness, and D for the finiteness of the Dirichlet integral.


2017 ◽  
Vol 10 (3) ◽  
pp. 455-480 ◽  
Author(s):  
BARTOSZ WCISŁO ◽  
MATEUSZ ŁEŁYK

AbstractWe prove that the theory of the extensional compositional truth predicate for the language of arithmetic with Δ0-induction scheme for the truth predicate and the full arithmetical induction scheme is not conservative over Peano Arithmetic. In addition, we show that a slightly modified theory of truth actually proves the global reflection principle over the base theory.


Sign in / Sign up

Export Citation Format

Share Document