On the Radial Symmetry Property for Harmonic Functions

2020 ◽  
Vol 64 (10) ◽  
pp. 9-19
Author(s):  
V. V. Volchkov ◽  
Vit. V. Volchkov
Author(s):  
Valeriy Vladimirovich Volchkov ◽  
◽  
Vitaliy Vladimirovich Volchkov ◽  

2019 ◽  
Vol 6 (1) ◽  
pp. 13 ◽  
Author(s):  
Denise M. D. S. Mouga ◽  
Gabriel R. Schroeder ◽  
Nilton P. Vieira Junior ◽  
Enderlei Dec

The pollen morphology of thirteen species of Cactaceae was studied: M. backebergiana F.G. Buchenau, M. decipiens Scheidw, M. elongata DC, M. gracilis Pfeiff., M. hahniana Werderm., M. marksiana Krainz, M. matudae Bravo, M. nejapensis R.T. Craig & E.Y. Dawson, M. nivosa Link ex Pfeiff., M. plumosa F.A.C. Weber, M. prolifera (Mill.) Haw, M. spinosissima var. “A Peak” Lem. and M. voburnensis Scheer. All analysed pollen grains are monads, with radial symmetry, medium size (M. gracilis, M. marksiana, M. prolifera, large), tricolpates (dimorphs in M. plumosa [3-6 colpus] and M. prolifera [3-6 colpus]), with circular-subcircular amb (quadrangular in M. prolifera and M. plumosa with six colpus). The pollen grains presented differences in relation to the shape and exine thickness. The exine was microechinate and microperforated. The pollen morphological data are unpublished and will aid in studies that use pollen samples. These pollen grains indicate ornamental cacti.


2005 ◽  
Vol 11 (4) ◽  
pp. 517-525
Author(s):  
Juris Steprāns

AbstractIt is shown to be consistent with set theory that every set of reals of size ℵ1 is null yet there are ℵ1 planes in Euclidean 3-space whose union is not null. Similar results will be obtained for other geometric objects. The proof relies on results from harmonic analysis about the boundedness of certain harmonic functions and a measure theoretic pigeonhole principle.


1975 ◽  
Vol 56 ◽  
pp. 1-5
Author(s):  
Masaru Hara

Given a harmonic function u on a Riemann surface R, we define a period functionfor every one-dimensional cycle γ of the Riemann surface R. Γx(R) denote the totality of period functions Γu such that harmonic functions u satisfy a boundedness property X. As for X, we let B stand for boundedness, and D for the finiteness of the Dirichlet integral.


Author(s):  
Riccardo Molle ◽  
Donato Passaseo

AbstractThe paper deals with the equation $$-\Delta u+a(x) u =|u|^{p-1}u $$ - Δ u + a ( x ) u = | u | p - 1 u , $$u \in H^1({\mathbb {R}}^N)$$ u ∈ H 1 ( R N ) , with $$N\ge 2$$ N ≥ 2 , $$p> 1,\ p< {N+2\over N-2}$$ p > 1 , p < N + 2 N - 2 if $$N\ge 3$$ N ≥ 3 , $$a\in L^{N/2}_{loc}({\mathbb {R}}^N)$$ a ∈ L loc N / 2 ( R N ) , $$\inf a> 0$$ inf a > 0 , $$\lim _{|x| \rightarrow \infty } a(x)= a_\infty $$ lim | x | → ∞ a ( x ) = a ∞ . Assuming that the potential a(x) satisfies $$\lim _{|x| \rightarrow \infty }[a(x)-a_\infty ] e^{\eta |x|}= \infty \ \ \forall \eta > 0$$ lim | x | → ∞ [ a ( x ) - a ∞ ] e η | x | = ∞ ∀ η > 0 , $$ \lim _{\rho \rightarrow \infty } \sup \left\{ a(\rho \theta _1) - a(\rho \theta _2) \ :\ \theta _1, \theta _2 \in {\mathbb {R}}^N,\ |\theta _1|= |\theta _2|=1 \right\} e^{\tilde{\eta }\rho } = 0 \quad \text{ for } \text{ some } \ \tilde{\eta }> 0$$ lim ρ → ∞ sup a ( ρ θ 1 ) - a ( ρ θ 2 ) : θ 1 , θ 2 ∈ R N , | θ 1 | = | θ 2 | = 1 e η ~ ρ = 0 for some η ~ > 0 and other technical conditions, but not requiring any symmetry, the existence of infinitely many positive multi-bump solutions is proved. This result considerably improves those of previous papers because we do not require that a(x) has radial symmetry, or that $$N=2$$ N = 2 , or that $$|a(x)-a_\infty |$$ | a ( x ) - a ∞ | is uniformly small in $${\mathbb {R}}^N$$ R N , etc. ....


Sign in / Sign up

Export Citation Format

Share Document