peano arithmetic
Recently Published Documents


TOTAL DOCUMENTS

275
(FIVE YEARS 36)

H-INDEX

18
(FIVE YEARS 1)

Metaphysica ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
David M. Freeman

Abstract Many have pointed out that the utility of mathematical objects is somewhat disconnected from their ontological status. For example, one might argue that arithmetic is useful whether or not numbers exist. We explore this phenomenon in the context of Divine Conceptualism (DC), which claims that mathematical objects exist as thoughts in the divine mind. While not arguing against DC claims, we argue that DC claims can lead to epistemological uncertainty regarding the ontological status of mathematical objects. This weakens DC attempts to explain the utility of mathematical objects on the basis of their existence. To address this weakness, we propose an appeal to Liggins’ theory of Belief Expressionism (BE). Indeed, we point out that BE is amenable to the ontological claims of DC while also explaining the utility of mathematical objects apart from reliance upon their existence. We illustrate these themes via a case study of Peano Arithmetic.


2021 ◽  
Vol 18 (5) ◽  
pp. 447-472
Author(s):  
Ross Brady

We assess Meyer’s formalization of arithmetic in his [21], based on the strong relevant logic R and compare this with arithmetic based on a suitable logic of meaning containment, which was developed in Brady [7]. We argue in favour of the latter as it better captures the key logical concepts of meaning and truth in arithmetic. We also contrast the two approaches to classical recapture, again favouring our approach in [7]. We then consider our previous development of Peano arithmetic including primitive recursive functions, finally extending this work to that of general recursion.


2021 ◽  
Vol 18 (5) ◽  
pp. 154-288
Author(s):  
Robert Meyer

The purpose of this paper is to formulate first-order Peano arithmetic within the resources of relevant logic, and to demonstrate certain properties of the system thus formulated. Striking among these properties are the facts that (1) it is trivial that relevant arithmetic is absolutely consistent, but (2) classical first-order Peano arithmetic is straightforwardly contained in relevant arithmetic. Under (1), I shall show in particular that 0 = 1 is a non-theorem of relevant arithmetic; this, of course, is exactly the formula whose unprovability was sought in the Hilbert program for proving arithmetic consistent. Under (2), I shall exhibit the requisite translation, drawing some Goedelian conclusions therefrom. Left open, however, is the critical problem whether Ackermann’s rule γ is admissible for theories of relevant arithmetic. The particular system of relevant Peano arithmetic featured in this paper shall be called R♯. Its logical base shall be the system R of relevant implication, taken in its first-order form RQ. Among other Peano arithmetics we shall consider here in particular the systems C♯, J♯, and RM3♯; these are based respectively on the classical logic C, the intuitionistic logic J, and the Sobocinski-Dunn semi-relevant logic RM3. And another feature of the paper will be the presentation of a system of natural deduction for R♯, along lines valid for first-order relevant theories in general. This formulation of R♯ makes it possible to construct relevantly valid arithmetical deductions in an easy and natural way; it is based on, but is in some respects more convenient than, the natural deduction formulations for relevant logics developed by Anderson and Belnap in Entailment.


2021 ◽  
Vol 18 (5) ◽  
pp. 380-400
Author(s):  
Robert Meyer ◽  
Chris Mortensen

This paper develops in certain directions the work of Meyer in [3], [4], [5] and [6] (see also Routley [10] and Asenjo [11]). In those works, Peano’s axioms for arithmetic were formulated with a logical base of the relevant logic R, and it was proved finitistically that the resulting arithmetic, called R♯, was absolutely consistent. It was pointed out that such a result escapes incau- tious formulations of Goedel’s second incompleteness theorem, and provides a basis for a revived Hilbert programme. The absolute consistency result used as a model arithmetic modulo two. Modulo arithmetics are not or- dinarily thought of as an extension of Peano arithmetic, since some of the propositions of the latter, such as that zero is the successor of no number, fail in the former. Consequently a logical base which, unlike classical logic, tolerates contradictory theories was used for the model. The logical base for the model was the three-valued logic RM3 (see e.g. [1] or [8]), which has the advantage that while it is an extension of R, it is finite valued and so easier to handle. The resulting model-theoretic structure (called in this paper RM32) is interesting in its own right in that the set of sentences true therein consti- tutes a negation inconsistent but absolutely consistent arithmetic which is an extension of R♯. In fact, in the light of the result of [6], it is an extension of Peano arithmetic with a base of a classical logic, P♯. A generalisation of the structure is to modulo arithmetics with the same logical base RM3, but with varying moduli (called RM3i here). We first study the properties of these arithmetics in this paper. The study is then generalised by vary- ing the logical base, to give the arithmetics RMni, of logical base RMn and modulus i. Not all of these exist, however, as arithmetical properties and logical properties interact, as we will show. The arithmetics RMni give rise, on intersection, to an inconsistent arithmetic RMω which is not of modulo i for any i. We also study its properties, and, among other results, we show by finitistic means that the more natural relevant arithmetics R♯ and R♯♯ are incomplete (whether or not consistent and recursively enumerable). In the rest of the paper we apply these techniques to several topics, particularly relevant quantum arithmetic in which we are able to show (unlike classical quantum arithmetic) that the law of distribution remains unprovable. Aside from its intrinsic interest, we regard the present exercise as a demonstration that inconsistent theories and models are of mathematical worth and interest.


2021 ◽  
Vol 13 ◽  
Author(s):  
Merlin Carl ◽  
Lothar Sebastian Krapp

Exploring further the connection between exponentiation on real closed fields and the existence of an integer part modelling strong fragments of arithmetic, we demonstrate that each model of true arithmetic is an integer part of an exponential real closed field that is elementarily equivalent to the real numbers with exponentiation and that each model of Peano arithmetic is an integer part of a real closed field that admits an isomorphism between its ordered additive and its ordered multiplicative group of positive elements. Under the assumption of Schanuel’s Conjecture, we obtain further strengthenings for the last statement.


Erkenntnis ◽  
2021 ◽  
Author(s):  
Holger Andreas ◽  
Georg Schiemer

AbstractIn this paper, we aim to explore connections between a Carnapian semantics of theoretical terms and an eliminative structuralist approach in the philosophy of mathematics. Specifically, we will interpret the language of Peano arithmetic by applying the modal semantics of theoretical terms introduced in Andreas (Synthese 174(3):367–383, 2010). We will thereby show that the application to Peano arithmetic yields a formal semantics of universal structuralism, i.e., the view that ordinary mathematical statements in arithmetic express general claims about all admissible interpretations of the Peano axioms. Moreover, we compare this application with the modal structuralism by Hellman (Mathematics without numbers: towards a modal-structural interpretation. Oxford University Press: Oxford, 1989), arguing that it provides us with an easier epistemology of statements in arithmetic.


2021 ◽  
Vol 82 (2) ◽  
Author(s):  
Paola D’Aquino ◽  
Jamshid Derakhshan ◽  
Angus Macintyre

AbstractWe give axioms for a class of ordered structures, called truncated ordered abelian groups (TOAG’s) carrying an addition. TOAG’s come naturally from ordered abelian groups with a 0 and a $$+$$ + , but the addition of a TOAG is not necessarily even a cancellative semigroup. The main examples are initial segments $$[0, \tau ]$$ [ 0 , τ ] of an ordered abelian group, with a truncation of the addition. We prove that any model of these axioms (i.e. a truncated ordered abelian group) is an initial segment of an ordered abelian group. We define Presburger TOAG’s, and give a criterion for a TOAG to be a Presburger TOAG, and for two Presburger TOAG’s to be elementarily equivalent, proving analogues of classical results on Presburger arithmetic. Their main interest for us comes from the model theory of certain local rings which are quotients of valuation rings valued in a truncation [0, a] of the ordered group $${\mathbb {Z}}$$ Z or more general ordered abelian groups, via a study of these truncations without reference to the ambient ordered abelian group. The results are used essentially in a forthcoming paper (D’Aquino and Macintyre, The model theory of residue rings of models of Peano Arithmetic: The prime power case, 2021, arXiv:2102.00295) in the solution of a problem of Zilber about the logical complexity of quotient rings, by principal ideals, of nonstandard models of Peano arithmetic.


Sign in / Sign up

Export Citation Format

Share Document