General Solution of a Vibration System with Damping Force of Fractional-Order Derivative

2010 ◽  
pp. 3-11
Author(s):  
Z. H. Wang ◽  
X. Wang
2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Christian Fogang ◽  
Francois Pelap ◽  
Guy Bertrand Tanekou ◽  
Romanic Kengne ◽  
Laurent Kagho ◽  
...  

In this work, we examine the dynamical behaviour of the “single mass-springs” model for earthquake subjected to the strength due to the up flow of magma for the period of volcanism, considering the fractional viscous damping force, the fractional weakening friction and fractional power law of elastic force. The numerical simulation method used in this paper is that of Grünwald-Letnikov based on the generalization of the classical derivative, and the approximately analytical solution obtained by the harmonic balance method. The results have shown that the fractional-order derivative can affect the dynamical properties of fault rock, which is characterized by the equivalent damping coefficient and the equivalent stiffness coefficient. Moreover, the amplitude-frequency equation for the steady-state solution was established. It appears that the resonant amplitude and resonant frequency are strongly dependent on the fractional-order damping r, fractional-order friction q, the fractional deflection 𝛼, the nonlinear stiffness coefficient and the fractional viscous coefficient. We have also shown that, the recurrence time of an event, the duration time of an event and the slip size of an earthquake can be controlled by the fractional-order derivative, the fractional-order deflection and the magnitude of the magma strength. The model allowed us to better interpret the earthquake as a stick-slip motion.


2020 ◽  
Vol 9 (11) ◽  
pp. 9769-9780
Author(s):  
S.G. Khavale ◽  
K.R. Gaikwad

This paper is dealing the modified Ohm's law with the temperature gradient of generalized theory of magneto-thermo-viscoelastic for a thermally, isotropic and electrically infinite material with a spherical region using fractional order derivative. The general solution obtained from Laplace transform, numerical Laplace inversion and state space approach. The temperature, displacement and stresses are obtained and represented graphically with the help of Mathcad software.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Choonkil Park ◽  
R. I. Nuruddeen ◽  
Khalid K. Ali ◽  
Lawal Muhammad ◽  
M. S. Osman ◽  
...  

Abstract This paper aims to investigate the class of fifth-order Korteweg–de Vries equations by devising suitable novel hyperbolic and exponential ansatze. The class under consideration is endowed with a time-fractional order derivative defined in the conformable fractional derivative sense. We realize various solitons and solutions of these equations. The fractional behavior of the solutions is studied comprehensively by using 2D and 3D graphs. The results demonstrate that the methods mentioned here are more effective in solving problems in mathematical physics and other branches of science.


2021 ◽  
pp. 104080
Author(s):  
Israr Ahmad ◽  
Thabet Abdeljawad ◽  
Ibrahim Mahariq ◽  
Kamal Shah ◽  
Nabil Mlaiki ◽  
...  

2021 ◽  
Vol 152 ◽  
pp. 111300
Author(s):  
Enli Chen ◽  
Wuce Xing ◽  
Meiqi Wang ◽  
Wenli Ma ◽  
Yujian Chang

Sign in / Sign up

Export Citation Format

Share Document