Lyapunov Exponents Vs Expansivity and Sensitivity in Cellular Automata

ACRI ’96 ◽  
1997 ◽  
pp. 57-71 ◽  
Author(s):  
Michele Finelli ◽  
Giovanni Manzini ◽  
Luciano Margara
2020 ◽  
Author(s):  
Johan Kopra

AbstractWe consider the problem of computing the Lyapunov exponents of reversible cellular automata (CA). We show that the class of reversible CA with right Lyapunov exponent 2 cannot be separated algorithmically from the class of reversible CA whose right Lyapunov exponents are at most $$2-\delta$$ 2 - δ for some absolute constant $$\delta >0$$ δ > 0 . Therefore there is no algorithm that, given as an input a description of an arbitrary reversible CA F and a positive rational number $$\epsilon >0$$ ϵ > 0 , outputs the Lyapunov exponents of F with accuracy $$\epsilon$$ ϵ . We also compute the average Lyapunov exponents (with respect to the uniform measure) of the reversible CA that perform multiplication by p in base pq for coprime $$p,q>1$$ p , q > 1 .


1992 ◽  
Vol 172 (1-2) ◽  
pp. 34-38 ◽  
Author(s):  
F. Bagnoli ◽  
R. Rechtman ◽  
S. Ruffo

2006 ◽  
Vol 124 (6) ◽  
pp. 1499-1509 ◽  
Author(s):  
M. Courbage ◽  
B. Kamiński

1998 ◽  
Vol 14 (2) ◽  
pp. 210-233 ◽  
Author(s):  
Michele Finelli ◽  
Giovanni Manzini ◽  
Luciano Margara

1999 ◽  
Vol 59 (2) ◽  
pp. R1307-R1310 ◽  
Author(s):  
Franco Bagnoli ◽  
Raúl Rechtman

Sign in / Sign up

Export Citation Format

Share Document