uniform measure
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
Tiangang Cui ◽  
Sergey Dolgov

AbstractCharacterising intractable high-dimensional random variables is one of the fundamental challenges in stochastic computation. The recent surge of transport maps offers a mathematical foundation and new insights for tackling this challenge by coupling intractable random variables with tractable reference random variables. This paper generalises the functional tensor-train approximation of the inverse Rosenblatt transport recently developed by Dolgov et al. (Stat Comput 30:603–625, 2020) to a wide class of high-dimensional non-negative functions, such as unnormalised probability density functions. First, we extend the inverse Rosenblatt transform to enable the transport to general reference measures other than the uniform measure. We develop an efficient procedure to compute this transport from a squared tensor-train decomposition which preserves the monotonicity. More crucially, we integrate the proposed order-preserving functional tensor-train transport into a nested variable transformation framework inspired by the layered structure of deep neural networks. The resulting deep inverse Rosenblatt transport significantly expands the capability of tensor approximations and transport maps to random variables with complicated nonlinear interactions and concentrated density functions. We demonstrate the efficiency of the proposed approach on a range of applications in statistical learning and uncertainty quantification, including parameter estimation for dynamical systems and inverse problems constrained by partial differential equations.


2020 ◽  
pp. 1-33
Author(s):  
RUIYUAN CHEN

Abstract We show that the uniform measure-theoretic ergodic decomposition of a countable Borel equivalence relation $(X, E)$ may be realized as the topological ergodic decomposition of a continuous action of a countable group $\Gamma \curvearrowright X$ generating E. We then apply this to the study of the cardinal algebra $\mathcal {K}(E)$ of equidecomposition types of Borel sets with respect to a compressible countable Borel equivalence relation $(X, E)$ . We also make some general observations regarding quotient topologies on topological ergodic decompositions, with an application to weak equivalence of measure-preserving actions.


2020 ◽  
Author(s):  
Johan Kopra

AbstractWe consider the problem of computing the Lyapunov exponents of reversible cellular automata (CA). We show that the class of reversible CA with right Lyapunov exponent 2 cannot be separated algorithmically from the class of reversible CA whose right Lyapunov exponents are at most $$2-\delta$$ 2 - δ for some absolute constant $$\delta >0$$ δ > 0 . Therefore there is no algorithm that, given as an input a description of an arbitrary reversible CA F and a positive rational number $$\epsilon >0$$ ϵ > 0 , outputs the Lyapunov exponents of F with accuracy $$\epsilon$$ ϵ . We also compute the average Lyapunov exponents (with respect to the uniform measure) of the reversible CA that perform multiplication by p in base pq for coprime $$p,q>1$$ p , q > 1 .


Author(s):  
Galyna V. Livshyts

In this note, we study the maximal perimeter of a convex set in [Formula: see text] with respect to various classes of measures. Firstly, we show that for a probability measure [Formula: see text] on [Formula: see text], satisfying very mild assumptions, there exists a convex set of [Formula: see text]-perimeter at least [Formula: see text] This implies, in particular, that for any isotropic log-concave measure [Formula: see text], one may find a convex set of [Formula: see text]-perimeter of order [Formula: see text]. Secondly, we derive a general upper bound of [Formula: see text] on the maximal perimeter of a convex set with respect to any log-concave measure with density [Formula: see text] in an appropriate position. Our lower bound is attained for a class of distributions including the standard normal distribution. Our upper bound is attained, say, for a uniform measure on the cube. In addition, for isotropic log-concave measures, we prove an upper bound of order [Formula: see text] for the maximal [Formula: see text]-perimeter of a convex set.


Author(s):  
Marco Console ◽  
Matthias Hofer ◽  
Leonid Libkin

In a variety of reasoning tasks, one estimates the likelihood of events by means of volumes of sets they define. Such sets need to be measurable, which is usually achieved by putting bounds, sometimes ad hoc, on them. We address the question how unbounded or unmeasurable sets can be measured nonetheless. Intuitively, we want to know how likely a randomly chosen point is to be in a given set, even in the absence of a uniform distribution over the entire space. To address this, we follow a recently proposed approach of taking intersection of a set with balls of increasing radius, and defining the measure by means of the asymptotic behavior of the proportion of such balls taken by the set. We show that this approach works for every set definable in first-order logic with the usual arithmetic over the reals (addition, multiplication, exponentiation, etc.), and every uniform measure over the space, of which the usual Lebesgue measure (area, volume, etc.) is an example. In fact we establish a correspondence between the good asymptotic behavior and the finiteness of the VC dimension of definable families of sets. Towards computing the measure thus defined, we show how to avoid the asymptotics and characterize it via a specific subset of the unit sphere. Using definability of this set, and known techniques for sampling from the unit sphere, we give two algorithms for estimating our measure of unbounded unmeasurable sets, with deterministic and probabilistic guarantees, the latter being more efficient. Finally we show that a discrete analog of this measure exists and is similarly well-behaved.


2020 ◽  
Vol 8 ◽  
Author(s):  
BEN ADCOCK ◽  
DAAN HUYBRECHS

In this paper, we introduce a method known as polynomial frame approximation for approximating smooth, multivariate functions defined on irregular domains in $d$ dimensions, where $d$ can be arbitrary. This method is simple, and relies only on orthogonal polynomials on a bounding tensor-product domain. In particular, the domain of the function need not be known in advance. When restricted to a subdomain, an orthonormal basis is no longer a basis, but a frame. Numerical computations with frames present potential difficulties, due to the near-linear dependence of the truncated approximation system. Nevertheless, well-conditioned approximations can be obtained via regularization, for instance, truncated singular value decompositions. We comprehensively analyze such approximations in this paper, providing error estimates for functions with both classical and mixed Sobolev regularity, with the latter being particularly suitable for higher-dimensional problems. We also analyze the sample complexity of the approximation for sample points chosen randomly according to a probability measure, providing estimates in terms of the corresponding Nikolskii inequality for the domain. In particular, we show that the sample complexity for points drawn from the uniform measure is quadratic (up to a log factor) in the dimension of the polynomial space, independently of  $d$ , for a large class of nontrivial domains. This extends a well-known result for polynomial approximation in hypercubes.


Sign in / Sign up

Export Citation Format

Share Document