metric entropy
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 23)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 20 (2) ◽  
Author(s):  
Andrzej Biś ◽  
Dikran Dikranjan ◽  
Anna Giordano Bruno ◽  
Luchezar Stoyanov

AbstractWe study the receptive metric entropy for semigroup actions on probability spaces, inspired by a similar notion of topological entropy introduced by Hofmann and Stoyanov (Adv Math 115:54–98, 1995). We analyze its basic properties and its relation with the classical metric entropy. In the case of semigroup actions on compact metric spaces we compare the receptive metric entropy with the receptive topological entropy looking for a Variational Principle. With this aim we propose several characterizations of the receptive topological entropy. Finally we introduce a receptive local metric entropy inspired by a notion by Bowen generalized in the classical setting of amenable group actions by Zheng and Chen, and we prove partial versions of the Brin–Katok Formula and the local Variational Principle.


Author(s):  
David J. Aldous

We revisit an old topic in algorithms, the deterministic walk on a finite graph which always moves toward the nearest unvisited vertex until every vertex is visited. There is an elementary connection between this cover time and ball-covering (metric entropy) measures. For some familiar models of random graphs, this connection allows the order of magnitude of the cover time to be deduced from first passage percolation estimates. Establishing sharper results seems a challenging problem.


2021 ◽  
pp. 1-15
Author(s):  
YUNTAO ZANG

Abstract Let f be a $C^2$ diffeomorphism on a compact manifold. Ledrappier and Young introduced entropies along unstable foliations for an ergodic measure $\mu $ . We relate those entropies to covering numbers in order to give a new upper bound on the metric entropy of $\mu $ in terms of Lyapunov exponents and topological entropy or volume growth of sub-manifolds. We also discuss extensions to the $C^{1+\alpha },\,\alpha>0$ , case.


2021 ◽  
Vol 53 (1) ◽  
pp. 1168-1190
Author(s):  
Rossana Capuani ◽  
Prerona Dutta ◽  
Khai T. Nguyen

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 145
Author(s):  
Lesław Kyzioł ◽  
Katarzyna Panasiuk ◽  
Grzegorz Hajdukiewicz ◽  
Krzysztof Dudzik

Due to the unique properties of polymer composites, these materials are used in many industries, including shipbuilding (hulls of boats, yachts, motorboats, cutters, ship and cooling doors, pontoons and floats, torpedo tubes and missiles, protective shields, antenna masts, radar shields, and antennas, etc.). Modern measurement methods and tools allow to determine the properties of the composite material, already during its design. The article presents the use of the method of acoustic emission and Kolmogorov-Sinai (K-S) metric entropy to determine the mechanical properties of composites. The tested materials were polyester-glass laminate without additives and with a 10% content of polyester-glass waste. The changes taking place in the composite material during loading were visualized using a piezoelectric sensor used in the acoustic emission method. Thanks to the analysis of the RMS parameter (root mean square of the acoustic emission signal), it is possible to determine the range of stresses at which significant changes occur in the material in terms of its use as a construction material. In the K-S entropy method, an important measuring tool is the extensometer, namely the displacement sensor built into it. The results obtained during the static tensile test with the use of an extensometer allow them to be used to calculate the K-S metric entropy. Many materials, including composite materials, do not have a yield point. In principle, there are no methods for determining the transition of a material from elastic to plastic phase. The authors showed that, with the use of a modern testing machine and very high-quality instrumentation to record measurement data using the Kolmogorov-Sinai (K-S) metric entropy method and the acoustic emission (AE) method, it is possible to determine the material transition from elastic to plastic phase. Determining the yield strength of composite materials is extremely important information when designing a structure.


2020 ◽  
pp. 2150021
Author(s):  
Xinsheng Wang ◽  
Weisheng Wu ◽  
Yujun Zhu

Let [Formula: see text] be a [Formula: see text] random partially hyperbolic dynamical system. For the unstable foliation, the corresponding unstable metric entropy, unstable topological entropy and unstable pressure via the dynamics of [Formula: see text] on the unstable foliation are introduced and investigated. A version of Shannon–McMillan–Breiman Theorem for unstable metric entropy is given, and a variational principle for unstable pressure (and hence for unstable entropy) is obtained. Moreover, as an application of the variational principle, equilibrium states for the unstable pressure including Gibbs [Formula: see text]-states are investigated.


2020 ◽  
Vol 6 (27) ◽  
pp. eaaz5548 ◽  
Author(s):  
A. Gualandi ◽  
J.-P. Avouac ◽  
S. Michel ◽  
D. Faranda

Slow earthquakes, like regular earthquakes, result from unstable frictional slip. They produce little slip and can therefore repeat frequently. We assess their predictability using the slip history of the Cascadia subduction between 2007 and 2017, during which slow earthquakes have repeatedly ruptured multiple segments. We characterize the system dynamics using embedding theory and extreme value theory. The analysis reveals a low-dimensional (<5) nonlinear chaotic system rather than a stochastic system. We calculate properties of the underlying attractor like its correlation and instantaneous dimension, instantaneous persistence, and metric entropy. We infer that the system has a predictability horizon of the order of days weeks. For the better resolved segments, the onset of large slip events can be correctly forecasted by high values of the instantaneous dimension. Longer-term deterministic prediction seems intrinsically impossible. Regular earthquakes might similarly be predictable but with a limited predictable horizon of the order of their durations.


Sign in / Sign up

Export Citation Format

Share Document