Large Deviation Lower Bounds For General Sequences Of Random Variables

Author(s):  
A. deAcosta ◽  
P. Ney ◽  
E. Nummelin
2011 ◽  
Vol 48 (02) ◽  
pp. 547-560 ◽  
Author(s):  
Iosif Pinelis

Exact lower bounds on the exponential moments of min(y,X) andX1{X<y} are provided given the first two moments of a random variableX. These bounds are useful in work on large deviation probabilities and nonuniform Berry-Esseen bounds, when the Cramér tilt transform may be employed. Asymptotic properties of these lower bounds are presented. Comparative advantages of the so-called Winsorization min(y,X) over the truncationX1{X<y} are demonstrated. An application to option pricing is given.


2011 ◽  
Vol 48 (2) ◽  
pp. 547-560 ◽  
Author(s):  
Iosif Pinelis

Exact lower bounds on the exponential moments of min(y, X) and X1{X < y} are provided given the first two moments of a random variable X. These bounds are useful in work on large deviation probabilities and nonuniform Berry-Esseen bounds, when the Cramér tilt transform may be employed. Asymptotic properties of these lower bounds are presented. Comparative advantages of the so-called Winsorization min(y, X) over the truncation X1{X < y} are demonstrated. An application to option pricing is given.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Wensheng Wang ◽  
Anwei Zhu

Let X={Xi,i≥1} be a sequence of real valued random variables, S0=0 and Sk=∑i=1kXi  (k≥1). Let σ={σ(x),x∈Z} be a sequence of real valued random variables which are independent of X’s. Denote by Kn=∑k=0nσ(⌊Sk⌋)  (n≥0) Kesten-Spitzer random walk in random scenery, where ⌊a⌋ means the unique integer satisfying ⌊a⌋≤a<⌊a⌋+1. It is assumed that σ’s belong to the domain of attraction of a stable law with index 0<β<2. In this paper, by employing conditional argument, we investigate large deviation inequalities, some sufficient conditions for Chover-type laws of the iterated logarithm and the cluster set for random walk in random scenery Kn. The obtained results supplement to some corresponding results in the literature.


2007 ◽  
Vol 39 (3) ◽  
pp. 731-752 ◽  
Author(s):  
Martin Raič

Large deviation estimates are derived for sums of random variables with certain dependence structures, including finite population statistics and random graphs. The argument is based on Stein's method, but with a novel modification of Stein's equation inspired by the Cramér transform.


2019 ◽  
Vol 47 (4) ◽  
pp. 2140-2171 ◽  
Author(s):  
Sourav Chatterjee

Sign in / Sign up

Export Citation Format

Share Document