Semisimple Modules & Rings and the Wedderburn Structure Theorem

Author(s):  
Benson Farb ◽  
R. Keith Dennis
Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter proves that Bruhat-Tits buildings exist. It begins with a few definitions and simple observations about quadratic forms, including a 1-fold Pfister form, followed by a discussion of the existence part of the Structure Theorem for complete discretely valued fields due to H. Hasse and F. K. Schmidt. It then considers the generic unramified cases; the generic semi-ramified cases, the generic ramified cases, the wild unramified cases, the wild semi-ramified cases, and the wild ramified cases. These cases range from a unique unramified quadratic space to an unramified separable quadratic extension, a tamely ramified division algebra, a ramified separable quadratic extension, and a unique unramified quaternion division algebra. The chapter also describes ramified quaternion division algebras D₁, D₂, and D₃ over K containing a common subfield E such that E/K is a ramified separable extension.


2013 ◽  
Vol 59 (1) ◽  
pp. 209-218 ◽  
Author(s):  
Kostaq Hila ◽  
Edmond Pisha

Abstract The purpose of this paper is to introduce and give some properties of l-Rees matrix Γ-semigroups. Generalizing the results given by Guowei and Ping, concerning the congruences and lattice of congruences on regular Rees matrix Γ-semigroups, the structure theorem of l-congruences lattice of l - Γ-semigroup M = μº(G : I; L; Γe) is given, from which it follows that this l-congruences lattice is distributive.


2021 ◽  
Vol 19 (1) ◽  
pp. 77-86
Author(s):  
Xiangjun Kong ◽  
Pei Wang ◽  
Jian Tang

Abstract In any U-abundant semigroup with an Ehresmann transversal, two significant components R and L are introduced in this paper and described by Green’s ∼ \sim -relations. Some interesting properties associated with R and L are explored and some equivalent conditions for the Ehresmann transversal to be a quasi-ideal are acquired. Finally, a spined product structure theorem is established for a U-abundant semigroup with a quasi-ideal Ehresmann transversal by means of R and L.


Author(s):  
Simon Machado

AbstractWe study infinite approximate subgroups of soluble Lie groups. We show that approximate subgroups are close, in a sense to be defined, to genuine connected subgroups. Building upon this result we prove a structure theorem for approximate lattices in soluble Lie groups. This extends to soluble Lie groups a theorem about quasi-crystals due to Yves Meyer.


2020 ◽  
Vol 48 (7) ◽  
pp. 2872-2882
Author(s):  
M. Behboodi ◽  
A. Daneshvar ◽  
M. R. Vedadi

1990 ◽  
Vol 18 (12) ◽  
pp. 4235-4253
Author(s):  
Robert Wisbauer
Keyword(s):  

1995 ◽  
Vol 41 (2) ◽  
pp. 249-256
Author(s):  
Francisco M. García Olmedo ◽  
Antonio J. Rodríguez Salas
Keyword(s):  

1986 ◽  
Vol 31 (1) ◽  
pp. 247-252 ◽  
Author(s):  
William Kerby
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document