Towards Harmonic Analysis on Homogeneous Spaces of Nilpotent Lie Groups

Author(s):  
Lawrence Corwin
Author(s):  
Soha Ali Salamah

In this research, we present some basic facts about Lie algebra and Lie groups. We shall require only elementary facts about the general definition and knowledge of a few of the more basic groups, such as Euclidean groups. Then we introduce the Heisenberg group which is the most well-known example from the realm of nilpotent Lie groups and plays an important role in several branches of mathematics, such as representation theory, partial differential equations and number theory... It also offers the greatest opportunity for generalizing the remarkable results of Euclidean harmonic analysis.


2016 ◽  
Vol 37 (7) ◽  
pp. 2060-2076
Author(s):  
MOHAMED BOULJIHAD

We give a criterion for the rigidity of the action of a group of affine transformations of a homogeneous space of a real Lie group. Let $G$ be a real Lie group, $\unicode[STIX]{x1D6EC}$ a lattice in $G$, and $\unicode[STIX]{x1D6E4}$ a subgroup of the affine group $\text{Aff}(G)$ stabilizing $\unicode[STIX]{x1D6EC}$. Then the action of $\unicode[STIX]{x1D6E4}$ on $G/\unicode[STIX]{x1D6EC}$ has the rigidity property in the sense of Popa [On a class of type $\text{II}_{1}$ factors with Betti numbers invariants. Ann. of Math. (2)163(3) (2006), 809–899] if and only if the induced action of $\unicode[STIX]{x1D6E4}$ on $\mathbb{P}(\mathfrak{g})$ admits no $\unicode[STIX]{x1D6E4}$-invariant probability measure, where $\mathfrak{g}$ is the Lie algebra of $G$. This generalizes results of Burger [Kazhdan constants for $\text{SL}(3,\mathbf{Z})$. J. Reine Angew. Math.413 (1991), 36–67] and Ioana and Shalom [Rigidity for equivalence relations on homogeneous spaces. Groups Geom. Dyn.7(2) (2013), 403–417]. As an application, we establish rigidity for the action of a class of groups acting by automorphisms on nilmanifolds associated to two-step nilpotent Lie groups.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 250
Author(s):  
Frédéric Barbaresco ◽  
Jean-Pierre Gazeau

For the 250th birthday of Joseph Fourier, born in 1768 at Auxerre in France, this MDPI special issue will explore modern topics related to Fourier analysis and Fourier Heat Equation. Fourier analysis, named after Joseph Fourier, addresses classically commutative harmonic analysis. The modern development of Fourier analysis during XXth century has explored the generalization of Fourier and Fourier-Plancherel formula for non-commutative harmonic analysis, applied to locally compact non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups (by associating coherent states to group representations that are square integrable over a homogeneous space). The name of Joseph Fourier is also inseparable from the study of mathematics of heat. Modern research on Heat equation explores geometric extension of classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. The heat equation for a general volume form that not necessarily coincides with the Riemannian one is useful in sub-Riemannian geometry, where a canonical volume only exists in certain cases. A new geometric theory of heat is emerging by applying geometric mechanics tools extended for statistical mechanics, for example, the Lie groups thermodynamics.


2016 ◽  
Vol 28 (2) ◽  
Author(s):  
Vignon Oussa

AbstractLet


Sign in / Sign up

Export Citation Format

Share Document