Weak (1,1) Estimates for Littlewood-Paley Functions with Rough Kernels

Author(s):  
Shuichi Sato
Keyword(s):  
2020 ◽  
Vol 53 (1) ◽  
pp. 44-57
Author(s):  
Mohammed Ali ◽  
Qutaibeh Katatbeh

AbstractIn this article, we study the generalized parabolic parametric Marcinkiewicz integral operators { {\mathcal M} }_{{\Omega },h,{\Phi },\lambda }^{(r)} related to polynomial compound curves. Under some weak conditions on the kernels, we establish appropriate estimates of these operators. By the virtue of the obtained estimates along with an extrapolation argument, we give the boundedness of the aforementioned operators from Triebel-Lizorkin spaces to Lp spaces under weaker conditions on Ω and h. Our results represent significant improvements and natural extensions of what was known previously.


2021 ◽  
Vol 11 (1) ◽  
pp. 72-95
Author(s):  
Xiao Zhang ◽  
Feng Liu ◽  
Huiyun Zhang

Abstract This paper is devoted to investigating the boundedness, continuity and compactness for variation operators of singular integrals and their commutators on Morrey spaces and Besov spaces. More precisely, we establish the boundedness for the variation operators of singular integrals with rough kernels Ω ∈ Lq (S n−1) (q > 1) and their commutators on Morrey spaces as well as the compactness for the above commutators on Lebesgue spaces and Morrey spaces. In addition, we present a criterion on the boundedness and continuity for a class of variation operators of singular integrals and their commutators on Besov spaces. As applications, we obtain the boundedness and continuity for the variation operators of Hilbert transform, Hermit Riesz transform, Riesz transforms and rough singular integrals as well as their commutators on Besov spaces.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiao Zhang ◽  
Feng Liu

Abstract In this note we study the maximal singular integral operators associated with a homogeneous mapping with rough kernels as well as the corresponding maximal operators. The boundedness and continuity on the Lebesgue spaces, Triebel–Lizorkin spaces, and Besov spaces are established for the above operators with rough kernels in $H^{1}({\mathrm{S}}^{n-1})$ H 1 ( S n − 1 ) , which complement some recent developments related to rough maximal singular integrals.


2006 ◽  
Vol 49 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Ahmad Al-Salman

AbstractIn this paper, we study the Lp mapping properties of a class of singular integral operators with rough kernels belonging to certain block spaces. We prove that our operators are bounded on Lp provided that their kernels satisfy a size condition much weaker than that for the classical Calderón–Zygmund singular integral operators. Moreover, we present an example showing that our size condition is optimal. As a consequence of our results, we substantially improve a previously known result on certain maximal functions.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Daiqing Zhang

We study the parametric Marcinkiewicz integrals along submanifolds of finite type with rough kernels. The kernels of our operators are allowed to be very rough both on the unit sphere and in the radial direction. Under the rather weakened size conditions on the integral kernels, the Lp bounds will be established for such operators. As applications, the corresponding results for parametric Marcinkiewicz integrals related to area integrals and Littlewood-Paley gλ⁎ functions are also given.


2019 ◽  
Vol 357 (5) ◽  
pp. 424-435
Author(s):  
Yongming Wen ◽  
Weichao Guo ◽  
Huoxiong Wu ◽  
Guoping Zhao
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document