Advances in Nonlinear Analysis
Latest Publications


TOTAL DOCUMENTS

443
(FIVE YEARS 174)

H-INDEX

18
(FIVE YEARS 7)

Published By Walter De Gruyter Gmbh

2191-950x, 2191-9496

2022 ◽  
Vol 11 (1) ◽  
pp. 741-756
Author(s):  
Umberto Guarnotta ◽  
Salvatore Angelo Marano ◽  
Abdelkrim Moussaoui

Abstract The existence of a positive entire weak solution to a singular quasi-linear elliptic system with convection terms is established, chiefly through perturbation techniques, fixed point arguments, and a priori estimates. Some regularity results are then employed to show that the obtained solution is actually strong.


2021 ◽  
Vol 11 (1) ◽  
pp. 726-740
Author(s):  
Josef Diblík ◽  
Denys Ya Khusainov ◽  
Andriy Shatyrko ◽  
Jaromír Baštinec ◽  
Zdeněk Svoboda

Abstract The paper studies absolute stability of neutral differential nonlinear systems x ˙ ( t ) = A x t + B x t − τ + D x ˙ t − τ + b f ( σ ( t ) ) , σ ( t ) = c T x ( t ) , t ⩾ 0 $$ \begin{align}\dot x(t)=Ax\left ( t \right )+Bx\left ( {t-\tau} \right ) +D\dot x\left ( {t-\tau} \right ) +bf({\sigma (t)}),\,\, \sigma (t)=c^Tx(t), \,\, t\geqslant 0 \end{align} $$ where x is an unknown vector, A, B and D are constant matrices, b and c are column constant vectors, 𝜏 > 0 is a constant delay and f is a Lurie-type nonlinear function satisfying Lipschitz condition. Absolute stability is analyzed by a general Lyapunov-Krasovskii functional with the results compared with those previously known.


2021 ◽  
Vol 11 (1) ◽  
pp. 684-701
Author(s):  
Siyu Chen ◽  
Carlos Alberto Santos ◽  
Minbo Yang ◽  
Jiazheng Zhou

Abstract In this paper, we consider the following modified quasilinear problem: − Δ u − κ u Δ u 2 = λ a ( x ) u − α + b ( x ) u β i n Ω , u > 0 i n Ω , u = 0 o n ∂ Ω , $$\begin{array}{} \left\{\begin{array}{c}\, -{\it\Delta} u-\kappa u{\it\Delta} u^2 = \lambda a(x)u^{-\alpha}+b(x)u^\beta \, \, in\, {\it\Omega}, \\\!\! u \gt 0 \, \, in\, {\it\Omega}, \, \, \, \, \, \, \, u = 0 \, \, on \, \partial{\it\Omega} , \\ \end{array}\right. \end{array} $$ where Ω ⊂ ℝ N is a smooth bounded domain, N ≥ 3, a, b are two bounded continuous functions, α > 0, 1 < β ≤ 22* − 1 and λ > 0 is a bifurcation parameter. We use the framework of analytic bifurcation theory to obtain an analytic global unbounded path of solutions to the problem. Moreover, we get the direction of solution curve at the asmptotic point.


2021 ◽  
Vol 11 (1) ◽  
pp. 702-725
Author(s):  
Zilai Li ◽  
Huaqiao Wang ◽  
Yulin Ye

Abstract In this paper, the Cauchy problem for the one-dimensional compressible isentropic magnetohydrodynamic (MHD) equations with no vacuum at infinity is considered, but the initial vacuum can be permitted inside the region. By deriving a priori ν (resistivity coefficient)-independent estimates, we establish the non-resistive limit of the global strong solutions with large initial data. Moreover, as a by-product, the global well-posedness of strong solutions for the compressible resistive MHD equations is also established.


2021 ◽  
Vol 11 (1) ◽  
pp. 672-683
Author(s):  
Salvatore Leonardi ◽  
Francesco Leonetti ◽  
Eugenio Rocha ◽  
Vasile Staicu

Abstract We consider quasilinear elliptic systems in divergence form. In general, we cannot expect that weak solutions are locally bounded because of De Giorgi’s counterexample. Here we assume that off-diagonal coefficients have a “butterfly support”: this allows us to prove local boundedness of weak solutions.


2021 ◽  
Vol 11 (1) ◽  
pp. 636-654
Author(s):  
Qiuping Geng ◽  
Jun Wang ◽  
Jing Yang

Abstract In this paper we are concerned with the existence, nonexistence and bifurcation of nontrivial solution of the nonlinear Schrödinger-Korteweg-de Vries type system(NLS-NLS-KdV). First, we find some conditions to guarantee the existence and nonexistence of positive solution of the system. Second, we study the asymptotic behavior of the positive ground state solution. Finally, we use the classical Crandall-Rabinowitz local bifurcation theory to get the nontrivial positive solution. To get these results we encounter some new challenges. By combining the Nehari manifolds constraint method and the delicate energy estimates, we overcome the difficulties and find the two bifurcation branches from one semitrivial solution. This is an new interesting phenomenon but which have not previously been found.


2021 ◽  
Vol 11 (1) ◽  
pp. 655-671
Author(s):  
Daniele Cassani ◽  
Antonio Tarsia

Abstract We first prove De Giorgi type level estimates for functions in W 1,t (Ω), Ω ⊂ R N $ \Omega\subset{\mathbb R}^N $ , with t > N ≥ 2 $ t \gt N\geq 2 $ . This augmented integrability enables us to establish a new Harnack type inequality for functions which do not necessarily belong to De Giorgi’s classes as obtained in Di Benedetto–Trudinger [10] for functions in W 1,2(Ω). As a consequence, we prove the validity of the strong maximum principle for uniformly elliptic operators of any even order, in fairly general domains in dimension two and three, provided second order derivatives are taken into account.


2021 ◽  
Vol 11 (1) ◽  
pp. 580-597
Author(s):  
Jia Wei He ◽  
Yong Zhou ◽  
Li Peng ◽  
Bashir Ahmad

Abstract We are devoted to the study of a semilinear time fractional Rayleigh-Stokes problem on ℝ N , which is derived from a non-Newtonain fluid for a generalized second grade fluid with Riemann-Liouville fractional derivative. We show that a solution operator involving the Laplacian operator is very effective to discuss the proposed problem. In this paper, we are concerned with the global/local well-posedness of the problem, the approaches rely on the Gagliardo-Nirenberg inequalities, operator theory, standard fixed point technique and harmonic analysis methods. We also present several results on the continuation, a blow-up alternative with a blow-up rate and the integrability in Lebesgue spaces.


2021 ◽  
Vol 11 (1) ◽  
pp. 598-619
Author(s):  
Guofeng Che ◽  
Tsung-fang Wu

Abstract We study the following Kirchhoff type equation: − a + b ∫ R N | ∇ u | 2 d x Δ u + u = k ( x ) | u | p − 2 u + m ( x ) | u | q − 2 u     in     R N , $$\begin{equation*}\begin{array}{ll} -\left(a+b\int\limits_{\mathbb{R}^{N}}|\nabla u|^{2}\mathrm{d}x\right)\Delta u+u =k(x)|u|^{p-2}u+m(x)|u|^{q-2}u~~\text{in}~~\mathbb{R}^{N}, \end{array} \end{equation*}$$ where N=3, a , b > 0 $ a,b \gt 0 $ , 1 < q < 2 < p < min { 4 , 2 ∗ } $ 1 \lt q \lt 2 \lt p \lt \min\{4, 2^{*}\} $ , 2≤=2N/(N − 2), k ∈ C (ℝ N ) is bounded and m ∈ L p/(p−q)(ℝ N ). By imposing some suitable conditions on functions k(x) and m(x), we firstly introduce some novel techniques to recover the compactness of the Sobolev embedding H 1 ( R N ) ↪ L r ( R N ) ( 2 ≤ r < 2 ∗ ) $ H^{1}(\mathbb{R}^{N})\hookrightarrow L^{r}(\mathbb{R}^{N}) (2\leq r \lt 2^{*}) $ ; then the Ekeland variational principle and an innovative constraint method of the Nehari manifold are adopted to get three positive solutions for the above problem.


2021 ◽  
Vol 11 (1) ◽  
pp. 620-635
Author(s):  
Xiaofeng Zhao ◽  
Hengyan Li ◽  
Weiping Yan

Abstract This paper considers an initial-boundary value problem for a class of singular quasilinear second-order ordinary differential equations with the constraint condition stemming from fluid mechanics. We prove that the existence of positive Sobolev regular solutions for this kind of singular quasilinear ODEs by means of a suitable Nash-Moser iteration scheme Meanwhile, asymptotic expansion of those positive solutions is shown.


Sign in / Sign up

Export Citation Format

Share Document