Estimation and Control Problems for Stochastic Partial Differential Equations

Author(s):  
Pavel S. Knopov ◽  
Olena N. Deriyeva
1975 ◽  
Vol 27 (1) ◽  
pp. 200-217 ◽  
Author(s):  
Robert Delver

From the time that the basic existence and regularity problems for partial differential equations have been solved many interesting new variational and control problems could be studied. In general a differential equation or boundary value problem is used to define a class of admissible functions, and then the problem is that of finding the extrema of a given functional defined on that class of functions.


1989 ◽  
Vol 115 ◽  
pp. 73-85 ◽  
Author(s):  
Noriaki Nagase

In this paper we are concerned with stochastic control problems of the following kind. Let Y(t) be a d’-dimensional Brownian motion defined on a probability space (Ω, F, Ft, P) and u(t) an admissible control. We consider the Cauchy problem of stochastic partial differential equations (SPDE in short)where L(y, u) is the 2nd order elliptic differential operator and M(y) the 1st order differential operator.


Author(s):  
Shohei Nakajima

AbstractWe prove existence of solutions and its properties for a one-dimensional stochastic partial differential equations with fractional Laplacian and non-Lipschitz coefficients. The method of proof is eatablished by Kolmogorov’s continuity theorem and tightness arguments.


Sign in / Sign up

Export Citation Format

Share Document