fractional laplacian
Recently Published Documents


TOTAL DOCUMENTS

684
(FIVE YEARS 313)

H-INDEX

39
(FIVE YEARS 7)

2021 ◽  
Vol 33 (1) ◽  
pp. 141-153
Author(s):  
N. Ustinov

Sufficient conditions are provided for the existence of a ground state solution for the problem generated by the fractional Sobolev inequality in Ω ∈ C 2 : \Omega \in C^2: ( − Δ ) S p s u ( x ) + u ( x ) = u 2 s ∗ − 1 ( x ) (-\Delta )_{Sp}^s u(x) + u(x) = u^{2^*_s-1}(x) . Here ( − Δ ) S p s (-\Delta )_{Sp}^s stands for the s s th power of the conventional Neumann Laplacian in Ω ⋐ R n \Omega \Subset \mathbb {R}^n , n ≥ 3 n \geq 3 , s ∈ ( 0 , 1 ) s \in (0, 1) , 2 s ∗ = 2 n / ( n − 2 s ) 2^*_s = 2n/(n-2s) . For the local case where s = 1 s = 1 , corresponding results were obtained earlier for the Neumann Laplacian and Neumann p p -Laplacian operators.


Author(s):  
Lisbeth Carrero ◽  
Alexander Quaas

In this paper, we prove existence results of a one-dimensional periodic solution to equations with the fractional Laplacian of order $s\in (1/2,1)$ , singular nonlinearity and gradient term under various situations, including nonlocal contra-part of classical Lienard vector equations, as well other nonlocal versions of classical results know only in the context of second-order ODE. Our proofs are based on degree theory and Perron's method, so before that we need to establish a variety of priori estimates under different assumptions on the nonlinearities appearing in the equations. Besides, we obtain also multiplicity results in a regime where a priori bounds are lost and bifurcation from infinity occurs.


2021 ◽  
Vol 10 (12) ◽  
pp. 3533-3548
Author(s):  
H. Desalegn ◽  
T. Abdi ◽  
J.B. Mijena

In this paper we discuss the following problem with additive noise, \[\begin{cases} \frac{\partial^{\beta} u(t,x) }{\partial t}=-(-\triangle)^{\frac{\alpha}{2}} u(t,x)+b(u(t,x))+\sigma\dot{W}(t,x),~~t>0, \\u(0,x)=u_{0}(x),\end{cases},\] where $\alpha \in(0,2) $ and $ \beta \in (0,1)$, the fractional time derivative is in the sense of Caputo, $-(-\Delta)^{\frac{\alpha}{2}}$ is the fractional Laplacian, $\sigma$ is a positive parameter, $\dot{W}$ is a space-time white noise, $u_0(x)$ is assumed to be non-negative, continuous and bounded. We study first the equation on $[0,\,1]$ with homogeneous Drichlet boundary condition and show that the solution of the equation blows up in finite time if and only if $b$ satisfies the Osgood condition, \[ \int_{c}^{\infty} \frac{ds}{b(s)} <\infty \] for some constant $c>0$. We then consider the same equation on the whole line and show that the above Osgood condition is satisfied whenever the solution of the equation blows up.


2021 ◽  
Vol 24 (6) ◽  
pp. 1797-1830
Author(s):  
Chenkuan Li

Abstract The objective of this paper is, for the first time, to extend the fractional Laplacian (−△) s u(x) over the space Ck (Rn ) (which contains S(Rn ) as a proper subspace) for all s > 0 and s ≠ 1, 2, …, based on the normalization in distribution theory, Pizzetti’s formula and surface integrals in Rn . We further present two theorems showing that our extended fractional Laplacian is continuous at the end points 1, 2, … . Two illustrative examples are provided to demonstrate computational techniques for obtaining the fractional Laplacian using special functions, Cauchy’s residue theorem and integral identities. An application to defining the Riesz derivative in the classical sense at odd numbers is also considered at the end.


2021 ◽  
Vol 24 (6) ◽  
pp. 1716-1734
Author(s):  
Caiyu Jiao ◽  
Abdul Khaliq ◽  
Changpin Li ◽  
Hexiang Wang

Abstract In general, the Riesz derivative and the fractional Laplacian are equivalent on ℝ. But they generally are not equivalent with each other on any proper subset of ℝ. In this paper, we focus on the difference between them on the proper subset of ℝ.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yunting Li ◽  
Yaqiong Liu ◽  
Yunhui Yi

AbstractThis paper is mainly concerned with the following semi-linear system involving the fractional Laplacian: $$ \textstyle\begin{cases} (-\Delta )^{\frac{\alpha }{2}}u(x)= (\frac{1}{ \vert \cdot \vert ^{\sigma }} \ast v^{p_{1}} )v^{p_{2}}(x), \quad x\in \mathbb{R}^{n}, \\ (-\Delta )^{\frac{\alpha }{2}}v(x)= (\frac{1}{ \vert \cdot \vert ^{\sigma }} \ast u^{q_{1}} )u^{q_{2}}(x), \quad x\in \mathbb{R}^{n}, \\ u(x)\geq 0,\quad\quad v(x)\geq 0, \quad x\in \mathbb{R}^{n}, \end{cases} $$ { ( − Δ ) α 2 u ( x ) = ( 1 | ⋅ | σ ∗ v p 1 ) v p 2 ( x ) , x ∈ R n , ( − Δ ) α 2 v ( x ) = ( 1 | ⋅ | σ ∗ u q 1 ) u q 2 ( x ) , x ∈ R n , u ( x ) ≥ 0 , v ( x ) ≥ 0 , x ∈ R n , where $0<\alpha \leq 2$ 0 < α ≤ 2 , $n\geq 2$ n ≥ 2 , $0<\sigma <n$ 0 < σ < n , and $0< p_{1}, q_{1}\leq \frac{2n-\sigma }{n-\alpha }$ 0 < p 1 , q 1 ≤ 2 n − σ n − α , $0< p_{2}, q_{2}\leq \frac{n+\alpha -\sigma }{n-\alpha }$ 0 < p 2 , q 2 ≤ n + α − σ n − α . Applying a variant (for nonlocal nonlinearity) of the direct method of moving spheres for fractional Laplacians, which was developed by W. Chen, Y. Li, and R. Zhang (J. Funct. Anal. 272(10):4131–4157, 2017), we derive the explicit forms for positive solution $(u,v)$ ( u , v ) in the critical case and nonexistence of positive solutions in the subcritical cases.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2843
Author(s):  
Ángel García ◽  
Mihaela Negreanu ◽  
Francisco Ureña ◽  
Antonio M. Vargas

The existence and uniqueness of the discrete solutions of a porous medium equation with diffusion are demonstrated. The Cauchy problem contains a fractional Laplacian and it is equivalent to the extension formulation in the sense of trace and harmonic extension operators. By using the generalized finite difference method, we obtain the convergence of the numerical solution to the classical/theoretical solution of the equation for nonnegative initial data sufficiently smooth and bounded. This procedure allows us to use meshes with complicated geometry (more realistic) or with an irregular distribution of nodes (providing more accurate solutions where needed). Some numerical results are presented in arbitrary irregular meshes to illustrate the potential of the method.


Sign in / Sign up

Export Citation Format

Share Document