Some Decidable Theories

1976 ◽  
pp. 233-243
Author(s):  
J. Donald Monk
Keyword(s):  
1983 ◽  
Vol 48 (1) ◽  
pp. 21-32 ◽  
Author(s):  
H. A. Kierstead ◽  
J. B. Remmel

Ehrenfeucht and Mostowski [3] introduced the notion of indiscernibles and proved that every first order theory has a model with an infinite set of order indiscernibles. Since their work, techniques involving indiscernibles have proved to be extremely useful for constructing models with various specialized properties. In this paper and in a sequel [5], we investigate the effective content of Ehrenfeucht's and Mostowski's result. In this paper we consider the question of which decidable theories have decidable models with infinite recursive sets of indiscernibles. In §1, using some basic facts from stability theory, we show that certain large classes of decidable theories have decidable models with infinite recursive sets of indiscernibles. For example, we show that every ω-stable decidable theory and every stable theory which possesses a certain strong decidability property called ∃Q-decidability have such models. In §2 we construct several examples of decidable theories which have no decidable models with infinite recursive sets of indiscernibles. These examples show that our hypothesis for our positive results in §1 are necessary. Finally in §3 we give two applications of our results. First as an easy application of our results in §1, we show that every ω-stable decidable theory has uncountable models which realize only recursive types. Also our counterexamples in §2 allow us to answer negatively two questions of Baldwin and Kueker [1] concerning the effectiveness of their elimination of Ramsey quantifiers for certain theories.In [5], we show that in general the problem of finding an infinite set of indiscernibles in a decidable model is recursively equivalent to finding a path through a recursive infinite branching tree. Similarly, we show that the problem of finding an co-type of a set of indiscernibles in a decidable ω-categorical theory is recursively equivalent to finding a path through a highly recursive finitely branching tree.


2020 ◽  
Vol 64 (7) ◽  
pp. 1523-1552
Author(s):  
Daniel Neider ◽  
P. Madhusudan ◽  
Shambwaditya Saha ◽  
Pranav Garg ◽  
Daejun Park

Abstract We propose a framework for synthesizing inductive invariants for incomplete verification engines, which soundly reduce logical problems in undecidable theories to decidable theories. Our framework is based on the counterexample guided inductive synthesis principle and allows verification engines to communicate non-provability information to guide invariant synthesis. We show precisely how the verification engine can compute such non-provability information and how to build effective learning algorithms when invariants are expressed as Boolean combinations of a fixed set of predicates. Moreover, we evaluate our framework in two verification settings, one in which verification engines need to handle quantified formulas and one in which verification engines have to reason about heap properties expressed in an expressive but undecidable separation logic. Our experiments show that our invariant synthesis framework based on non-provability information can both effectively synthesize inductive invariants and adequately strengthen contracts across a large suite of programs. This work is an extended version of a conference paper titled “Invariant Synthesis for Incomplete Verification Engines”.


1988 ◽  
Vol 53 (1) ◽  
pp. 20 ◽  
Author(s):  
John Doner ◽  
Wilfrid Hodges

1970 ◽  
Author(s):  
Gert H. Müller ◽  
Dirk Siefkes
Keyword(s):  

2021 ◽  
Author(s):  
◽  
Meenu Mariya Jose

<p>There are distinct differences between classes of matroids that are closed under principal extensions and those that are not Finite-field-representable matroids are not closed under principal extensions and they exhibit attractive properties like well-quasi-ordering and decidable theories (at least for subclasses with bounded branch-width). Infinite-field-representable matroids, on the other hand, are closed under principal extensions and exhibit none of these behaviours. For example, the class of rank-3 real representable matroids is not well-quasi-ordered and has an undecidable theory. The class of matroids that are transversal and cotransversal is not closed under principal extensions or coprincipal coextentions, so we expect it to behave more like the class of finite-field-representable matroids. This thesis is invested in exploring properties in the aforementioned class. A major idea that has inspired the thesis is the investigation of well-quasi-ordered classes in the world of matroids that are transversal and cotransversal. We conjecture that any minor-closed class with bounded branch-width containing matroids that are transversal and cotransversal is well-quasi-ordered. In Chapter 8 of the thesis, we prove this is true for lattice-path matroids, a well-behaved class that falls in this intersection. The general class of lattice-path matroids is not well-quasi-ordered as it contains an infinite antichain of so-called ‘notch matroids’. The interesting phenomenon that we observe is that this is essentially the only antichain in this class, that is, any minor-closed family of lattice-path matroids that contains only finitely many notch matroids is well-quasi-ordered. This answers a question posed by Jim Geelen.  Another question that drove the research was recognising fundamental transversal matroids, since these matroids are also cotransversal. We prove that this problem in general is in NP and conjecture that it is NP-complete. We later explore this question for the classes of lattice-path and bicircular matroids. We are successful in finding polynomial-time algorithms in both classes that identify fundamental transversal matroids. We end this part by investigating the intersection of bicircular and cobicircular matroids. We define a specific class - whirly-swirls - and conjecture that eventually any matroid in the above mentioned intersection belongs to this class.</p>


1963 ◽  
Vol 28 (1) ◽  
pp. 72-74 ◽  
Author(s):  
Alan Cobham

A system formalized within the first order predicate calculus either with or without the identity but without predicate or function variables we call simply a theory. We say that a theory T has a recursively enumerable complement (r.e. Comp.) if the set of all sentences of T not valid in T is recursively enumerable. This is equivalent to saying that there exists an effective, purely mechanical procedure for establishing the non-validity in T of precisely those sentences of T which are in fact not theorems of T. If in addition T is recursively enumerable, that is, if there is an effective procedure for establishing the validity in T of its theorems, then T is decidable. It will be shown here that several well-known results concerning decidable theories can be extended to cover theories with r.e. comps. In this respect it should be observed that there exist theories having r.e. comps. which are not decidable. An example is the theory which has as valid sentences just those which contain a given two-place predicate and which are valid in all non-void finite universes [3], [4].


Sign in / Sign up

Export Citation Format

Share Document