first order theory
Recently Published Documents


TOTAL DOCUMENTS

417
(FIVE YEARS 36)

H-INDEX

33
(FIVE YEARS 1)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Pablo Rivas-Robledo

Abstract In this article I present HYPER-REF, a model to determine the referent of any given expression in First-Order Logic (FOL). I also explain how this model can be used to determine the referent of a first-order theory such as First-Order Arithmetic (FOA). By reference or referent I mean the non-empty set of objects that the syntactical terms of a well-formed formula (wff) pick out given a particular interpretation of the language. To do so, I will first draw on previous work to make explicit the notion of reference and its hyperintensional features. Then I present HYPER-REF and offer a heuristic method for determining the reference of any formula. Then I discuss some of the benefits and most salient features of HYPER-REF, including some remarks on the nature of self-reference in formal languages.


2021 ◽  
Author(s):  
◽  
Wilfred Gordon Malcolm

<p>The programme of work for this thesis began with the somewhat genenal intention of parallelling in the context of higher order models the ultraproduct construction and its consequences as developed in the literature for first order models. Something of this was, of course, already available in the ultrapower construction of W.A.J. Luxemburg used in Non Standand Analysis. It may have been considered that such a genenal intention was not likely to yield anything of significance oven and above what was already available from viewing the higher order situation as a 'many sorted' first order one and interpreting the first order theory accordingly. In the event, however, I believe this has proved not to be so. In particular the substructure concepts developed in Chapter II of this thesis together with the various embedding theorems and their applications are not immediately available fnom the first order theory and seem to be of sufficient worth to warrant developing the higher order theory in its own terms. This, anyway, is the basic justification for the approach and content of the thesis.</p>


2021 ◽  
Vol 8 (30) ◽  
pp. 948-970
Author(s):  
Samuel Braunfeld ◽  
Michael Laskowski

We give several characterizations of when a complete first-order theory T T is monadically NIP, i.e. when expansions of T T by arbitrary unary predicates do not have the independence property. The central characterization is a condition on finite satisfiability of types. Other characterizations include decompositions of models, the behavior of indiscernibles, and a forbidden configuration. As an application, we prove non-structure results for hereditary classes of finite substructures of non-monadically NIP models that eliminate quantifiers.


2021 ◽  
Vol 181 (2-3) ◽  
pp. 129-161
Author(s):  
Richard Whyman

We present the concept of a theory machine, which is an atemporal computational formalism that is deployable within an arbitrary logical system. Theory machines are intended to capture computation on an arbitrary system, both physical and unphysical, including quantum computers, Blum-Shub-Smale machines, and infinite time Turing machines. We demonstrate that for finite problems, the computational power of any device characterisable by a finite first-order theory machine is equivalent to that of a Turing machine. Whereas for infinite problems, their computational power is equivalent to that of a type-2 machine. We then develop a concept of complexity for theory machines, and prove that the class of problems decidable by a finite first order theory machine with polynomial resources is equal to 𝒩𝒫 ∩ co-𝒩𝒫.


2021 ◽  
pp. 230-282
Author(s):  
A. J. Cotnoir ◽  
Achille C. Varzi

This chapter considers whether mereology should rightly be thought of as a first-order theory with parthood as a binary predicate. It considers extensions of classical mereology aimed at overcoming the expressive limits of standard first-order languages, focusing on second-order and plural formulations. Relatedly, Lewis’s megethology and applications to the philosophy of mathematics are discussed. Then, several ways of modifying the framework to make room for mereological considerations involving time and modality are presented, such as the possibility that an object may have different parts at different times, or that it could have had different parts from the ones it actually has. Finally, a number of theories are expounded that can be developed in order to deal with the phenomenon of mereological indeterminacy, i.e., the fact that in some cases the very question of whether something is part of something else does not appear to have a definite answer.


2021 ◽  
Vol 18 (5) ◽  
pp. 289-379
Author(s):  
Robert Meyer

This paper offers an elementary proof that formal arithmetic is consistent. The system that will be proved consistent is a first-order theory R♯, based as usual on the Peano postulates and the recursion equations for + and ×. However, the reasoning will apply to any axiomatizable extension of R♯ got by adding classical arithmetical truths. Moreover, it will continue to apply through a large range of variation of the un- derlying logic of R♯, while on a simple and straightforward translation, the classical first-order theory P♯ of Peano arithmetic turns out to be an exact subsystem of R♯. Since the reasoning is elementary, it is formalizable within R♯ itself; i.e., we can actually demonstrate within R♯ (or within P♯, if we care) a statement that, in a natural fashion, asserts the consistency of R♯ itself. The reader is unlikely to have missed the significance of the remarks just made. In plain English, this paper repeals Goedel’s famous second theorem. (That’s the one that asserts that sufficiently strong systems are inadequate to demonstrate their own consistency.) That theorem (or at least the significance usually claimed for it) was a mis- take—a subtle and understandable mistake, perhaps, but a mistake nonetheless. Accordingly, this paper reinstates the formal program which is often taken to have been blasted away by Goedel’s theorems— namely, the Hilbert program of demonstrating, by methods that everybody can recognize as effective and finitary, that intuitive mathematics is reliable. Indeed, the present consistency proof for arithmetic will be recognized as correct by anyone who can count to 3. (So much, indeed, for the claim that the reliability of arithmetic rests on transfinite induction up to ε0, and for the incredible mythology that underlies it.)


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 119
Author(s):  
Marcoen J. T. F. Cabbolet

It is well known that Zermelo-Fraenkel Set Theory (ZF), despite its usefulness as a foundational theory for mathematics, has two unwanted features: it cannot be written down explicitly due to its infinitely many axioms, and it has a countable model due to the Löwenheim–Skolem theorem. This paper presents the axioms one has to accept to get rid of these two features. For that matter, some twenty axioms are formulated in a non-classical first-order language with countably many constants: to this collection of axioms is associated a universe of discourse consisting of a class of objects, each of which is a set, and a class of arrows, each of which is a function. The axioms of ZF are derived from this finite axiom schema, and it is shown that it does not have a countable model—if it has a model at all, that is. Furthermore, the axioms of category theory are proven to hold: the present universe may therefore serve as an ontological basis for category theory. However, it has not been investigated whether any of the soundness and completeness properties hold for the present theory: the inevitable conclusion is therefore that only further research can establish whether the present results indeed constitute an advancement in the foundations of mathematics.


Sign in / Sign up

Export Citation Format

Share Document