Dirac Operators and Index Theory

Author(s):  
Michael E. Taylor
Keyword(s):  
Author(s):  
Moulay-Tahar Benameur ◽  
James L. Heitsch

AbstractWhen the index bundle of a longitudinal Dirac type operator is transversely smooth, we define its Chern character in Haefliger cohomology and relate it to the Chern character of the K—theory index. This result gives a concrete connection between the topology of the foliation and the longitudinal index formula. Moreover, the usual spectral assumption on the Novikov-Shubin invariants of the operator is improved.


2018 ◽  
Vol 167 (3) ◽  
pp. 437-487 ◽  
Author(s):  
SARA AZZALI ◽  
CHARLOTTE WAHL

AbstractWe construct η- and ρ-invariants for Dirac operators, on the universal covering of a closed manifold, that are invariant under the projective action associated to a 2-cocycle of the fundamental group. We prove an Atiyah–Patodi–Singer index theorem in this setting, as well as its higher generalisation. Applications concern the classification of positive scalar curvature metrics on closed spin manifolds. We also investigate the properties of these twisted invariants for the signature operator and the relation to the higher invariants.


2020 ◽  
Author(s):  
Rufus Willett ◽  
Guoliang Yu
Keyword(s):  

Author(s):  
Jean-Michel Bismut

This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by localization on geodesics in the symmetric space, in a formula closely related to the Atiyah-Bott fixed point formulas. Orbital integrals associated with the wave kernel are also computed. Estimates on the hypoelliptic heat kernel play a key role in the proofs, and are obtained by combining analytic, geometric, and probabilistic techniques. Analytic techniques emphasize the wavelike aspects of the hypoelliptic heat kernel, while geometrical considerations are needed to obtain proper control of the hypoelliptic heat kernel, especially in the localization process near the geodesics. Probabilistic techniques are especially relevant, because underlying the hypoelliptic deformation is a deformation of dynamical systems on the symmetric space, which interpolates between Brownian motion and the geodesic flow. The Malliavin calculus is used at critical stages of the proof.


Sign in / Sign up

Export Citation Format

Share Document