codimension two
Recently Published Documents


TOTAL DOCUMENTS

584
(FIVE YEARS 70)

H-INDEX

36
(FIVE YEARS 2)

2022 ◽  
Vol 43 (0) ◽  
pp. 1-15
Author(s):  
YANG Yujiao ◽  
◽  
◽  
XU Huidong ◽  
ZHANG Jianwen ◽  
...  

2021 ◽  
pp. 108128652110520
Author(s):  
Elizaveta Zipunova ◽  
Evgeny Savenkov

In this paper, we present a consistent derivation of the phase field model for electrically induced damage. The derivation is based on Gurtin’s microstress and microforce theory and the Coleman–Noll procedure. The resulting model accounts for Ohmic currents, includes charge conservation law and allows for finite electric permittivity and conductivity distribution in the medium. Special attention is devoted to the case when the damaged region is a codimension-two object, i.e., a curve in three dimensions. It is shown that in this case the free energy of the model necessarily includes a high-order term, which ensures the well-posedness of the problem. A special problem setting is proposed to account for the prescribed charge distribution. Local features of the phase field distribution are illustrated with one-dimensional axisymmetric numerical experiments.


Author(s):  
Fahad Al Saadi ◽  
Alan Champneys

A recent study of canonical activator-inhibitor Schnakenberg-like models posed on an infinite line is extended to include models, such as Gray–Scott, with bistability of homogeneous equilibria. A homotopy is studied that takes a Schnakenberg-like glycolysis model to the Gray–Scott model. Numerical continuation is used to understand the complete sequence of transitions to two-parameter bifurcation diagrams within the localized pattern parameter regime as the homotopy parameter varies. Several distinct codimension-two bifurcations are discovered including cusp and quadruple zero points for homogeneous steady states, a degenerate heteroclinic connection and a change in connectedness of the homoclinic snaking structure. The analysis is repeated for the Gierer–Meinhardt system, which lies outside the canonical framework. Similar transitions are found under homotopy between bifurcation diagrams for the case where there is a constant feed in the active field, to it being in the inactive field. Wider implications of the results are discussed for other pattern-formation systems arising as models of natural phenomena. This article is part of the theme issue ‘Recent progress and open frontiers in Turing’s theory of morphogenesis’.


Author(s):  
A. R. P. Moreira ◽  
J. E. G. Silva ◽  
C. A. S. Almeida

Braneworld models are interesting theoretical and phenomenological frameworks to search for new physics beyond the standard model of particles and cosmology. In this work, we discuss braneworld models whose gravitational dynamics is governed by teleparallel [Formula: see text] gravities. Here, we emphasize a codimension two-axisymmetric model, also known as a string-like brane. Likewise, in the 5D domain-wall models, the [Formula: see text] gravitational modification leads to a phase transition on the perfect fluid source providing a brane-splitting mechanism. Furthermore, the torsion changes the gravitational perturbations. The torsion produces new potential wells inside the brane core leading to a massless mode more localized around the ring structures. In addition, the torsion keeps a gapless nonlocalizable and a stable tower of massive modes in the bulk.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Po-Shen Hsin ◽  
Kevin Slagle

We investigate the properties of foliated gauge fields and construct several foliated field theories in 3+1d that describe foliated fracton orders both with and without matter, including the recent hybrid fracton models. These field theories describe Abelian or non-Abelian gauge theories coupled to foliated gauge fields, and they fall into two classes of models that we call the electric models and the magnetic models. We show that these two classes of foliated field theories enjoy a duality. We also construct a model (using foliated gauge fields and an exactly solvable lattice Hamiltonian model) for a subsystem-symmetry protected topological (SSPT) phase, which is analogous to a one-form symmetry protected topological phase, with the subsystem symmetry acting on codimension-two subregions. We construct the corresponding gauged SSPT phase as a foliated two-form gauge theory. Some instances of the gauged SSPT phase are a variant of the X-cube model with the same ground state degeneracy and the same fusion, but different particle statistics.


Author(s):  
G. Derks ◽  
P. A. Glendinning ◽  
A. C. Skeldon

Circle maps frequently arise in mathematical models of physical or biological systems. Motivated by Cherry flows and ‘threshold’ systems such as integrate and fire neuronal models, models of cardiac arrhythmias, and models of sleep/wake regulation, we consider how structural transitions in circle maps occur. In particular, we describe how maps evolve near the creation of a discontinuity. We show that the natural way to create discontinuities in the maps associated with both threshold systems and Cherry flows results in a singularity in the derivative of the map as the discontinuity is approached from either one or both sides. For the threshold systems, the associated maps have square root singularities and we analyse the generic properties of such maps with gaps, showing how border collisions and saddle-node bifurcations are interspersed. This highlights how the Arnold tongue picture for tongues bordered by saddle-node bifurcations is amended once gaps are present. We also show that a loss of injectivity naturally results in the creation of multiple gaps giving rise to a novel codimension two bifurcation.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Nathan Haouzi ◽  
Can Kozçaz

Abstract Starting from type IIB string theory on an ADE singularity, the (2, 0) little string arises when one takes the string coupling gs to 0. In this setup, we give a unified description of the codimension-two defects of the little string, labeled by a simple Lie algebra $$ \mathfrak{g} $$ g . Geometrically, these are D5 branes wrapping 2-cycles of the singularity, subject to a certain folding operation when the algebra is non simply-laced. Equivalently, the defects are specified by a certain set of weights of $$ {}^L\mathfrak{g} $$ L g , the Langlands dual of $$ \mathfrak{g} $$ g . As a first application, we show that the instanton partition function of the $$ \mathfrak{g} $$ g -type quiver gauge theory on the defect is equal to a 3-point conformal block of the $$ \mathfrak{g} $$ g -type deformed Toda theory in the Coulomb gas formalism. As a second application, we argue that in the (2, 0) CFT limit, the Coulomb branch of the defects flows to a nilpotent orbit of $$ \mathfrak{g} $$ g .


Author(s):  
A. R. P. Moreira ◽  
J. E. G. Silva ◽  
D. F. S. Veras ◽  
C. A. S. Almeida

We propose a codimension two warped braneworld model within the teleparallel [Formula: see text] gravity. Asymptotically, the bulk geometry converges to an [Formula: see text] spacetime whose cosmological constant is produced by the torsion parameters. Furthermore, the torsion induces an AdS-dS transition on the exterior region. As the torsion parameters vary, the brane undergoes a phase transition from a thick string-like brane into ring-like structures. The bulk-brane Planck mass ration is modified by the torsion. The analysis of the stress–energy condition reveals a splitting brane process satisfying the weak and strong–energy conditions for some values of the parameters. In addition, we investigate the behavior of the gravitational perturbations in this scenario. It turns out that the gravitational spectrum has a linear behavior for small masses and is independent of the torsion parameters for large masses. In the bulk, the torsion keeps a gapless nonlocalizable and stable tower of massive modes. Inside the brane core, the torsion produces new barriers and potential wells leading to small amplitude massive modes and a massless mode localized around the ring structures.


Sign in / Sign up

Export Citation Format

Share Document