On Dirichlet Series for Sums of Squares

Author(s):  
Jonathan Michael Borwein ◽  
Kwok-Kwong Stephen Choi
2021 ◽  
Vol 107 ◽  
pp. 67-105
Author(s):  
Elisabeth Gaar ◽  
Daniel Krenn ◽  
Susan Margulies ◽  
Angelika Wiegele

2021 ◽  
Vol 33 (4) ◽  
pp. 1061-1082
Author(s):  
Yujiao Jiang ◽  
Guangshi Lü

Abstract Let π be an automorphic irreducible cuspidal representation of GL m {\operatorname{GL}_{m}} over ℚ {\mathbb{Q}} with unitary central character, and let λ π ⁢ ( n ) {\lambda_{\pi}(n)} be its n-th Dirichlet series coefficient. We study short sums of isotypic trace functions associated to some sheaves modulo primes q of bounded conductor, twisted by multiplicative functions λ π ⁢ ( n ) {\lambda_{\pi}(n)} and μ ⁢ ( n ) ⁢ λ π ⁢ ( n ) {\mu(n)\lambda_{\pi}(n)} . We are able to establish non-trivial bounds for these algebraic twisted sums with intervals of length of at least q 1 / 2 + ε {q^{1/2+\varepsilon}} for an arbitrary fixed ε > 0 {\varepsilon>0} .


Author(s):  
Johann Franke

AbstractBased on the new approach to modular forms presented in [6] that uses rational functions, we prove a dominated convergence theorem for certain modular forms in the Eisenstein space. It states that certain rearrangements of the Fourier series will converge very fast near the cusp $$\tau = 0$$ τ = 0 . As an application, we consider L-functions associated to products of Eisenstein series and present natural generalized Dirichlet series representations that converge in an expanded half plane.


Author(s):  
Mareike Dressler ◽  
Adam Kurpisz ◽  
Timo de Wolff

AbstractVarious key problems from theoretical computer science can be expressed as polynomial optimization problems over the boolean hypercube. One particularly successful way to prove complexity bounds for these types of problems is based on sums of squares (SOS) as nonnegativity certificates. In this article, we initiate optimization problems over the boolean hypercube via a recent, alternative certificate called sums of nonnegative circuit polynomials (SONC). We show that key results for SOS-based certificates remain valid: First, for polynomials, which are nonnegative over the n-variate boolean hypercube with constraints of degree d there exists a SONC certificate of degree at most $$n+d$$ n + d . Second, if there exists a degree d SONC certificate for nonnegativity of a polynomial over the boolean hypercube, then there also exists a short degree d SONC certificate that includes at most $$n^{O(d)}$$ n O ( d ) nonnegative circuit polynomials. Moreover, we prove that, in opposite to SOS, the SONC cone is not closed under taking affine transformation of variables and that for SONC there does not exist an equivalent to Putinar’s Positivstellensatz for SOS. We discuss these results from both the algebraic and the optimization perspective.


Sign in / Sign up

Export Citation Format

Share Document