Efficient Arithmetic on Koblitz Curves

Author(s):  
Jerome A. Solinas
Keyword(s):  
2008 ◽  
Vol 60 (6) ◽  
pp. 1267-1282 ◽  
Author(s):  
Ian F. Blake ◽  
V. Kumar Murty ◽  
Guangwu Xu

AbstractIn his seminal papers, Koblitz proposed curves for cryptographic use. For fast operations on these curves, these papers also initiated a study of the radix-τ expansion of integers in the number fields and . The (window) nonadjacent form of τ -expansion of integers in was first investigated by Solinas. For integers in , the nonadjacent form and the window nonadjacent form of the τ -expansion were studied. These are used for efficient point multiplications on Koblitz curves. In this paper, we complete the picture by producing the (window) nonadjacent radix-τ expansions for integers in all Euclidean imaginary quadratic number fields.


2014 ◽  
Vol 931-932 ◽  
pp. 1441-1446 ◽  
Author(s):  
Krissanee Kamthawee ◽  
Bhichate Chiewthanakul

Recently elliptic curve cryptosystems are widely accepted for security applications key generation, signature and verification. Cryptographic mechanisms based on elliptic curves depend on arithmetic involving the points of the curve. it is possible to use smaller primes, or smaller finite fields, with elliptic curves and achieve a level of security comparable to that for much larger integers. Koblitz curves, also known as anomalous binary curves, are elliptic curves defined over F2. The primary advantage of these curves is that point multiplication algorithms can be devised that do not use any point doublings. The ElGamal cryptosystem, which is based on the Discrete Logarithm problem can be implemented in any group. In this paper, we propose the ElGamal over Koblitz Curve Scheme by applying the arithmetic on Koblitz curve to the ElGamal cryptosystem. The advantage of this scheme is that point multiplication algorithms can be speeded up the scalar multiplication in the affine coodinate of the curves using Frobenius map. It has characteristic two, therefore it’s arithmetic can be designed in any computer hardware. Moreover, it has more efficient to employ the TNAF method for scalar multiplication on Koblitz curves to decrease the number of nonzero digits. It’s security relies on the inability of a forger, who does not know a private key, to compute elliptic curve discrete logarithm.


Sign in / Sign up

Export Citation Format

Share Document