scholarly journals Speeding Up the Fixed-Base Comb Method for Faster Scalar Multiplication on Koblitz Curves

Author(s):  
Christian Hanser ◽  
Christian Wagner
2014 ◽  
Vol 931-932 ◽  
pp. 1441-1446 ◽  
Author(s):  
Krissanee Kamthawee ◽  
Bhichate Chiewthanakul

Recently elliptic curve cryptosystems are widely accepted for security applications key generation, signature and verification. Cryptographic mechanisms based on elliptic curves depend on arithmetic involving the points of the curve. it is possible to use smaller primes, or smaller finite fields, with elliptic curves and achieve a level of security comparable to that for much larger integers. Koblitz curves, also known as anomalous binary curves, are elliptic curves defined over F2. The primary advantage of these curves is that point multiplication algorithms can be devised that do not use any point doublings. The ElGamal cryptosystem, which is based on the Discrete Logarithm problem can be implemented in any group. In this paper, we propose the ElGamal over Koblitz Curve Scheme by applying the arithmetic on Koblitz curve to the ElGamal cryptosystem. The advantage of this scheme is that point multiplication algorithms can be speeded up the scalar multiplication in the affine coodinate of the curves using Frobenius map. It has characteristic two, therefore it’s arithmetic can be designed in any computer hardware. Moreover, it has more efficient to employ the TNAF method for scalar multiplication on Koblitz curves to decrease the number of nonzero digits. It’s security relies on the inability of a forger, who does not know a private key, to compute elliptic curve discrete logarithm.


2008 ◽  
Vol 57 (4) ◽  
pp. 481-489 ◽  
Author(s):  
C. Vuillaume ◽  
K. Okeya ◽  
T. Takagi

Sign in / Sign up

Export Citation Format

Share Document