fixed base
Recently Published Documents


TOTAL DOCUMENTS

528
(FIVE YEARS 145)

H-INDEX

27
(FIVE YEARS 4)

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 274
Author(s):  
Keqin Dou ◽  
Jun Li ◽  
Yong Zhou

Accelerating the innovation and development of the Industrial Internet Platform is inevitably necessary for the integration of new-generation information technology and the manufacturing industry. It is also the key point for promoting the construction of manufacturing power and network power. In this paper, based on the comprehensive analysis of the relevant problems of China’s Industrial Internet Platform development monitoring, the development index of the Industrial Internet Platform is designed. Taking a typical domestic Industrial Internet Platform as an example, the development index of the Industrial Internet Platform in 2018, 2019, and 2020 are comprehensively calculated in this paper. The results show that China’s Industrial Internet Platform is rapidly growing in many aspects, such as industrial equipment cloud and industrial APP. There is a large space for improving the industrial knowledge accumulation reuse and the application promotion of small/medium-sized enterprises. The results in this paper can provide scientific suggestions and practical references for the government, enterprises, scientific research institutions, which is of great significance in promoting the healthiness and sustainability of the Industrial Internet Platform.


2022 ◽  
Vol 21 (4) ◽  
pp. 300-307
Author(s):  
P. P Gaidzhurov ◽  
N. A. Saveleva ◽  
E. V. Trufanova

Introduction. The concept of estimating the dynamic parameters of the “base — weakened layer — block” system is proposed, taking into account the physical nonlinearity of the material and the kinematic method of excitation of vibrations. In accordance with this approach, the physical nonlinearity of the base and block material is considered using the Drucker- Prager model. The weakened layer is modeled by 3D spring finite elements. The verification procedure of the proposed methodology is carried out on the example of the dynamic calculation of the “base — weakened layer — slope” system.Materials and Methods. The computational experiments were performed using the ANSYS Mechanical software package in combination with a nonlinear solver based on the Newton-Raphson procedure. SOLID45 volumetric finite elements were used to discretize the computational domains. Combined elastic-viscous elements COMBIN14 were used to simulate the displacement of the block relative to the fixed base.Results. An engineering technique for the dynamic analysis of the stress-strain state of the “base — weakened layer — block” spatial system with kinematic method of excitation of vibrations is developed. The accuracy and convergence of the proposed method is investigated using specific numerical examples.Discussion and Conclusion. Based on the mathematic simulation performed, it is shown that the developed technique provides assessing the risks of the occurrence of real landslide processes caused by external non-stationary impacts.


2022 ◽  
Author(s):  
Aditya Kotikalpudi ◽  
Justin R. Gray ◽  
David H. Klyde ◽  
Fernando J. Oliveira Moreira ◽  
Daniel Drewiacki
Keyword(s):  

Author(s):  
Volodymyr I. Mikitenko ◽  
Volodymyr M. Senatorov ◽  
Anatolii Gurnovych

The automatic robotic complex will obviously become one of the main subjects in the conduct of military actions in the near future. To control movement parameters, as well as search, target detection and aiming, the complex includes a technical vision system. The minimum sufficient configuration of such a system includes a television search camera with a wide field of view, television and thermal imaging sights, and a rangefinder. The use of laser rangefinders ensures high accuracy of aiming weapons, but generates a powerful unmasking feature. To ensure the secrecy of the functioning of the robotic complex, range finders can operate in a passive mode using information from on-board television cameras. But at the same time, the metrological characteristics of the information measuring channel are significantly deteriorated. Accuracy of five methods of passive distance measurement with application of TV-systems of land unmanned complex is assessed in paper. Classic method of TV-sight external-base range-finder with scale, designed on human height 1,65 m, is ensuring measurement accuracy 135 m on distance 1000 m. External base method, when a range finger scale is forming on remote display as variable length vertical line in process of target framing, is ensuring measurement accuracy 100,3 m on dis-tance 1000 m. Fixed-base range-finder method, when distance between entrance pupils of TV-sight and wide viewing field camera using as base, is ensuring measurement accuracy 76 m on distance 1000 m.  Distance measurement method due to displacement of land unmanned complex ensures a measurement accuracy up to 168 m on distance 1000 m. Measurement method due to using zoom-objective is not suitable for land unmanned complex. Proposals have been formulated for the spatial layout of the computer vision system, in which the method of the fixed-base rangefinder is implemented, which ensures the highest measurement accuracy.


2021 ◽  
Author(s):  
Alonso Gómez-Bernal ◽  
Eduardo Arellano Méndez ◽  
Luis Ángel Quiroz-Guzmán ◽  
Hugón Juárez-García ◽  
Oscar González Cuevas

This paper investigates the behavior of a transfer slab system used in medium rise building. For this purpose, two slab-wall full-scale specimens were designed, built, and tested to cyclic loads. The two slab-wall prototypes were exposed to three load stages: (a) vertical load, (b) horizontal load, and (c) vertical and horizontal combined load. The first specimen, SP1, includes a masonry wall situated on top of a squared two-way slab of 4.25 m by side, thickness of 12 cm, on four reinforced concrete girders, while the second specimen, SP2, consists of an identical slab but was constructed with a reinforced concrete wall. Some numerical finite element slab-wall models were built using linear and nonlinear models. The most important results presented herein are the change on lateral stiffness and resistance capacity of the load-bearing wall supported on a slab versus the wall supported on a fixed base and the effects that these walls cause on the slabs. During the experimental test process of horizontal loading, we detected that the stiffness of the two slab-wall systems decreased significantly compared to the one on the fixed base wall, a result supported by the numerical models. The models indicated suitable correlation and were used to conduct a detailed parametric study on various design configurations.


Author(s):  
Jackie D. Zehr ◽  
Jack P. Callaghan

Abstract A mechanical goal of in vitro testing systems is to minimize differences between applied and actual forces and moments experienced by spinal units. This study quantified the joint reaction forces and reaction flexion-extension moments during dynamic compression loading imposed throughout the physiological flexion-extension range-of-motion. Constrained (fixed base) and unconstrained (floating base) testing systems were compared. Sixteen porcine spinal units were assigned to both testing groups. Following conditioning tests, specimens were dynamically loaded for 1 cycle with a 1 Hz compression waveform to a peak load of 1 kN and 2 kN while positioned in five different postures (neutral, 100% and 300% of the flexion and extension neutral zone), totalling ten trials per FSU. A six degree-of-freedom force and torque sensor was used to measure peak reaction forces and moments for each trial. Shear reaction forces were significantly greater (25.5 N - 85.7 N) when the testing system was constrained compared to unconstrained (p < 0.029). The reaction moment was influenced by posture (p = 0.037), particularly in C5C6 spinal units. In 300% extension (C5C6), the reaction moment was, on average, 9.9 Nm greater than the applied moment in both testing systems and differed from all other postures (p < 0.001). The reaction moment error was, on average, 0.45 Nm at all other postures. In conclusion, these findings demonstrate that comparable reaction moments can be achieved with unconstrained systems, but without inducing appreciable shear reaction forces.


2021 ◽  
Vol 17 (3-4) ◽  
pp. 89-100
Author(s):  
M. Davidson ◽  
A. Patil ◽  
S.A. Rosenfeld ◽  
Z. Zhu

Frequency-based analysis techniques such as response spectrum analysis (RSA) are widely used for designing bridges in seismically active regions. Two well-known analysis procedures that underlie RSA are the solution of the eigenproblem and the approximation of the solution to the eigenproblem (i.e., approximation of eigenvectors and eigenvalues) through use of force-dependent Ritz vectors. While frequency-based methods have achieved widespread adoption in practice, certain simplifications remain common, such as neglecting soil-structure interaction (SSI) due to a fixed-base assumption. In the present study, frequency-based techniques packaged within a research version of a design-oriented computational tool are employed to analyze, assess, and compare results obtained from RSA with use of the eigenanalysis, and separately, Ritz vector approaches. Importantly, for the bridge configurations analyzed, SSI is taken into account. As outcomes, the potential benefits of the Ritz vector approach (as well as modeling strategies) are demonstrated. The study outcomes are intended to aid practicing engineers when the need to account for SSI is recognized as pertinent to a given bridge seismic design application.


Author(s):  
V.V. Kovalev ◽  

At the present, the improvement of vibration isolation systems for equipment, machines and units remains an urgent task. The ways to solve this problem are based on the optimization of existing structures, the development and application of new vibration-insulating elements as well as the improvement of design methods. In particular, to ensure the reliable functioning of agricultural machines, units, working elements and other mechanization means for the technological processes of agricultural production one of the perspective areas is the use of hydraulic vibra-tion mounts in suspension systems for units. This type of mounts is used to mount engines, cabins of agricultural vehicles, and power units. This paper discusses the simu-lation of the dynamic behavior of a power unit attached to a fixed base by the hydraulic mounts. It is proposed to use approximating functions modelling real stiffness character-istics of the mounts. A comparative analysis with a similar design using rubber-metal mounts as vibration-insulating elements is presented.


Sign in / Sign up

Export Citation Format

Share Document