Elliptic Units in Function Fields

Author(s):  
David R. Hayes
1997 ◽  
Vol 40 (4) ◽  
pp. 385-394
Author(s):  
Sunghan Bae ◽  
Pyung-Lyun Kang

AbstractElliptic units of global function fields were first studied by D. Hayes in the case that deg ∞ is assumed to be 1, and he obtained some class number formulas using elliptic units. We generalize Hayes’ results to the case that deg ∞ is arbitrary.


Number Theory ◽  
1995 ◽  
pp. 187-208
Author(s):  
Hassan Oukhaba

Author(s):  
CLEMENS FUCHS ◽  
SEBASTIAN HEINTZE

Abstract Let $ (G_n)_{n=0}^{\infty } $ be a nondegenerate linear recurrence sequence whose power sum representation is given by $ G_n = a_1(n) \alpha _1^n + \cdots + a_t(n) \alpha _t^n $ . We prove a function field analogue of the well-known result in the number field case that, under some nonrestrictive conditions, $ |{G_n}| \geq ( \max _{j=1,\ldots ,t} |{\alpha _j}| )^{n(1-\varepsilon )} $ for $ n $ large enough.


1988 ◽  
Vol 62 (2) ◽  
pp. 145-161 ◽  
Author(s):  
R. Gold ◽  
H. Kisilevsky
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document