linear recurrence
Recently Published Documents





2022 ◽  
Vol 23 (2) ◽  
pp. 1-20
Shaull Almagor ◽  
Dmitry Chistikov ◽  
Joël Ouaknine ◽  
James Worrell

Termination analysis of linear loops plays a key rôle in several areas of computer science, including program verification and abstract interpretation. Already for the simplest variants of linear loops the question of termination relates to deep open problems in number theory, such as the decidability of the Skolem and Positivity Problems for linear recurrence sequences, or equivalently reachability questions for discrete-time linear dynamical systems. In this article, we introduce the class of o-minimal invariants , which is broader than any previously considered, and study the decidability of the existence and algorithmic synthesis of such invariants as certificates of non-termination for linear loops equipped with a large class of halting conditions. We establish two main decidability results, one of them conditional on Schanuel’s conjecture is transcendental number theory.

2022 ◽  
Vol 23 (1) ◽  
pp. 1-42
Gilles Barthe ◽  
Charlie Jacomme ◽  
Steve Kremer

We study decidability problems for equivalence of probabilistic programs for a core probabilistic programming language over finite fields of fixed characteristic. The programming language supports uniform sampling, addition, multiplication, and conditionals and thus is sufficiently expressive to encode Boolean and arithmetic circuits. We consider two variants of equivalence: The first one considers an interpretation over the finite field F q , while the second one, which we call universal equivalence, verifies equivalence over all extensions F q k of F q . The universal variant typically arises in provable cryptography when one wishes to prove equivalence for any length of bitstrings, i.e., elements of F 2 k for any k . While the first problem is obviously decidable, we establish its exact complexity, which lies in the counting hierarchy. To show decidability and a doubly exponential upper bound of the universal variant, we rely on results from algorithmic number theory and the possibility to compare local zeta functions associated to given polynomials. We then devise a general way to draw links between the universal probabilistic problems and widely studied problems on linear recurrence sequences. Finally, we study several variants of the equivalence problem, including a problem we call majority, motivated by differential privacy. We also define and provide some insights about program indistinguishability, proving that it is decidable for programs always returning 0 or 1.

2021 ◽  
Vol 56 (2) ◽  
pp. 195-223
Igoris Belovas ◽  

The paper extends the investigations of limit theorems for numbers satisfying a class of triangular arrays, defined by a bivariate linear recurrence with bivariate linear coefficients. We obtain the partial differential equation and special analytical expressions for the numbers using a semi-exponential generating function. We apply the results to prove the asymptotic normality of special classes of the numbers and specify the convergence rate to the limiting distribution. We demonstrate that the limiting distribution is not always Gaussian.

Elisa Bellah

Finding integer solutions to norm form equations is a classical Diophantine problem. Using the units of the associated coefficient ring, we can produce sequences of solutions to these equations. It is known that these solutions can be written as tuples of linear recurrence sequences. We show that for certain families of norm forms defined over quartic fields, there exist integrally equivalent forms making any one fixed coordinate sequence a linear divisibility sequence.

C. Krattenthaler

AbstractWe present a formula that expresses the Hankel determinants of a linear combination of length $$d+1$$ d + 1 of moments of orthogonal polynomials in terms of a $$d\times d$$ d × d determinant of the orthogonal polynomials. This formula exists somehow hidden in the folklore of the theory of orthogonal polynomials but deserves to be better known, and be presented correctly and with full proof. We present four fundamentally different proofs, one that uses classical formulae from the theory of orthogonal polynomials, one that uses a vanishing argument and is due to Elouafi (J Math Anal Appl 431:1253–1274, 2015) (but given in an incomplete form there), one that is inspired by random matrix theory and is due to Brézin and Hikami (Commun Math Phys 214:111–135, 2000), and one that uses (Dodgson) condensation. We give two applications of the formula. In the first application, we explain how to compute such Hankel determinants in a singular case. The second application concerns the linear recurrence of such Hankel determinants for a certain class of moments that covers numerous classical combinatorial sequences, including Catalan numbers, Motzkin numbers, central binomial coefficients, central trinomial coefficients, central Delannoy numbers, Schröder numbers, Riordan numbers, and Fine numbers.

2021 ◽  
Vol 38 (1) ◽  
pp. 149-158

In 1963, Peter Hagis, Jr. provided a Hardy-Ramanujan-Rademacher-type convergent series that can be used to compute an isolated value of the partition function $Q(n)$ which counts partitions of $n$ into distinct parts. Computing $Q(n)$ by this method requires arithmetic with very high-precision approximate real numbers and it is complicated. In this paper, we investigate new connections between partitions into distinct parts and overpartitions and obtain a surprising recurrence relation for the number of partitions of $n$ into distinct parts. By particularization of this relation, we derive two different linear recurrence relations for the partition function $Q(n)$. One of them involves the thrice square numbers and the other involves the generalized octagonal numbers. The recurrence relation involving the thrice square numbers provide a simple and fast computation of the value of $Q(n)$. This method uses only (large) integer arithmetic and it is simpler to program. Infinite families of linear inequalities involving partitions into distinct parts and overpartitions are introduced in this context.

2021 ◽  
Vol 2113 (1) ◽  
pp. 012070
Ben-Chao Yang ◽  
Xue-Feng Han

Abstract Recursive relation mainly describes the unique law satisfied by a sequence, so it plays an important role in almost all branches of mathematics. It is also one of the main algorithms commonly used in computer programming. This paper first introduces the concept of recursive relation and two common basic forms, then starts with the solution of linear recursive relation with non-homogeneous constant coefficients, gives a new solution idea, and gives a general proof. Finally, through an example, the general method and the new method given in this paper are compared and verified.

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2050
Włodzimierz Bielecki ◽  
Piotr Błaszyński

In this article, we present a technique that allows us to generate parallel tiled code to calculate general linear recursion equations (GLRE). That code deals with multidimensional data and it is computing-intensive. We demonstrate that data dependencies available in an original code computing GLREs do not allow us to generate any parallel code because there is only one solution to the time partition constraints built for that program. We show how to transform the original code to another one that exposes dependencies such that there are two linear distinct solutions to the time partition restrictions derived from these dependencies. This allows us to generate parallel 2D tiled code computing GLREs. The wavefront technique is used to achieve parallelism, and the generated code conforms to the OpenMP C/C++ standard. The experiments that we conducted with the resulting parallel 2D tiled code show that this code is much more efficient than the original serial code computing GLREs. Code performance improvement is achieved by allowing parallelism and better locality of the target code.

Sign in / Sign up

Export Citation Format

Share Document