Thermal Exchange Optimization Algorithm

Author(s):  
Ali Kaveh ◽  
Taha Bakhshpoori
Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1477
Author(s):  
Chun-Yao Lee ◽  
Guang-Lin Zhuo

This paper proposes a hybrid whale optimization algorithm (WOA) that is derived from the genetic and thermal exchange optimization-based whale optimization algorithm (GWOA-TEO) to enhance global optimization capability. First, the high-quality initial population is generated to improve the performance of GWOA-TEO. Then, thermal exchange optimization (TEO) is applied to improve exploitation performance. Next, a memory is considered that can store historical best-so-far solutions, achieving higher performance without adding additional computational costs. Finally, a crossover operator based on the memory and a position update mechanism of the leading solution based on the memory are proposed to improve the exploration performance. The GWOA-TEO algorithm is then compared with five state-of-the-art optimization algorithms on CEC 2017 benchmark test functions and 8 UCI repository datasets. The statistical results of the CEC 2017 benchmark test functions show that the GWOA-TEO algorithm has good accuracy for global optimization. The classification results of 8 UCI repository datasets also show that the GWOA-TEO algorithm has competitive results with regard to comparison algorithms in recognition rate. Thus, the proposed algorithm is proven to execute excellent performance in solving optimization problems.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Liu Wei ◽  
Su Xiao Pan ◽  
Y. A. Nanehkaran ◽  
V. Rajinikanth

Skin cancer is the most common cancer of the body. It is estimated that more than one million people worldwide develop skin cancer each year. Early detection of this cancer has a high effect on the disease treatment. In this paper, a new optimal and automatic pipeline approach has been proposed for the diagnosis of this disease from dermoscopy images. The proposed method includes a noise reduction process before processing for eliminating the noises. Then, the Otsu method as one of the widely used thresholding method is used to characterize the region of interest. Afterward, 20 different features are extracted from the image. To reduce the method complexity, a new modified version of the Thermal Exchange Optimization Algorithm is performed to the features. This improves the method precision and consistency. To validate the proposed method’s efficiency, it is implemented to the American Cancer Society database, its results are compared with some state-of-the-art methods, and the final results showed the superiority of the proposed method against the others.


Sign in / Sign up

Export Citation Format

Share Document