Deadlock Detection in Petri Net Equivalent to IMDS

Author(s):  
Wiktor B. Daszczuk
Keyword(s):  
2011 ◽  
Vol 284-286 ◽  
pp. 1498-1501
Author(s):  
Yi Sheng Huang ◽  
Ter Chan Row

Deadlock prevention, deadlock detection and deadlock avoidance strategies are used to solve the deadlock problems of flexible manufacturing systems (FMSs). The conventional prevention policies were always attempt to prevent the system entering the deadlocked situation by using a few control places. On can know that one prohibits the deadlocked markings, some dead markings will be sacrificed. Therefore, the reachability states will become less than the initial net. However, our goal is to preserve all the reachability states of the initial net. Under our control policy, the deadlocks or deadlock zone will be channelized to live markings such that all the dead markings in reachability states will be conserved. Finally, an example is performed and can obtain the maximal permissiveness of a Petri net model. The other examples are all getting the same result. To our knowledge, this is the first work that employs the channelized method to prevent the deadlock problem for FMSs.


2013 ◽  
Vol 837 ◽  
pp. 322-327
Author(s):  
Daniela Coman ◽  
Adela Ionescu

This paper focuses on the modelling, simulation and the performance analysis of a flexible manufacturing system using stochastic timed Petri nets so as to evaluate various performance parameters such as utilization rate of machines, deadlock detection, cycle time, and throughput rate of system in order to obtain the optimum productivity. The simulation of the manufacturing system using Petri nets provides the possibility to view the manufacturing process in time. Petri net model is implemented in Petri Net Toolbox under MATLAB environment. It is achieved the graphic construction of the net. Then, transporting it into a specific mathematical formalism it is made, so that the fulfiled structure to be fully retrieved and used to bring out the internal dynamics of the model. It is validated in this way the net topology, the evolution of (their dynamics), as well as the structural and behavioral properties (corresponding to checking if resources usage is stable and the model have no deadlocks). Some global performance indicators are determined in order to evaluate the performance of the proposed manufacturing system.


Author(s):  
Jack Penm ◽  
Robert Penm ◽  
Jonathan Penm ◽  
R.D. Terrell ◽  
Yasuo Hoshino
Keyword(s):  

Author(s):  
Yi-Sheng Huang ◽  
Yen-Liang Pan

Deadlock prevention, deadlock detection, and deadlock avoidance strategies are used to solve the deadlock problems of Flexible Manufacturing Systems (FMS). The theory of regions has been recognized as the unique method for obtaining maximally permissive controllers in the existing literature. All legal and live maximal behavior of a Petri net model can be preserved by using a Marking/Transition-Separation Instance (MTSI). However, obtaining all sets of MTSIs is an extremely time consuming problem. This work proposes Crucial Marking/Transition-Separation Instances (CMTSIs) that allow designers to employ few MTSIs to deal with deadlocks. The advantage of the proposed policy is that a maximally permissive controller can be obtained with drastically reduced computation. Experimental results, by varying the markings of given net structures, indicate that it is the most efficient policy to obtain optimal controllers among existing methods based on the theory of regions.


Sign in / Sign up

Export Citation Format

Share Document