A Computationally Improved Control Policy for FMS Using Crucial Marking/Transition-Separation Instances

Author(s):  
Yi-Sheng Huang ◽  
Yen-Liang Pan

Deadlock prevention, deadlock detection, and deadlock avoidance strategies are used to solve the deadlock problems of Flexible Manufacturing Systems (FMS). The theory of regions has been recognized as the unique method for obtaining maximally permissive controllers in the existing literature. All legal and live maximal behavior of a Petri net model can be preserved by using a Marking/Transition-Separation Instance (MTSI). However, obtaining all sets of MTSIs is an extremely time consuming problem. This work proposes Crucial Marking/Transition-Separation Instances (CMTSIs) that allow designers to employ few MTSIs to deal with deadlocks. The advantage of the proposed policy is that a maximally permissive controller can be obtained with drastically reduced computation. Experimental results, by varying the markings of given net structures, indicate that it is the most efficient policy to obtain optimal controllers among existing methods based on the theory of regions.

2011 ◽  
Vol 284-286 ◽  
pp. 1498-1501
Author(s):  
Yi Sheng Huang ◽  
Ter Chan Row

Deadlock prevention, deadlock detection and deadlock avoidance strategies are used to solve the deadlock problems of flexible manufacturing systems (FMSs). The conventional prevention policies were always attempt to prevent the system entering the deadlocked situation by using a few control places. On can know that one prohibits the deadlocked markings, some dead markings will be sacrificed. Therefore, the reachability states will become less than the initial net. However, our goal is to preserve all the reachability states of the initial net. Under our control policy, the deadlocks or deadlock zone will be channelized to live markings such that all the dead markings in reachability states will be conserved. Finally, an example is performed and can obtain the maximal permissiveness of a Petri net model. The other examples are all getting the same result. To our knowledge, this is the first work that employs the channelized method to prevent the deadlock problem for FMSs.


2011 ◽  
Vol 317-319 ◽  
pp. 552-555
Author(s):  
Yi Sheng Huang ◽  
Ter Chan Row

Petri nets are employed to model flexible manufacturing systems (FMSs). However, the system deadlocked are possible happened. The conventional deadlock prevention policies are always to forbid the system entering the deadlock by using the control places. To obtain a live system, some dead markings must be sacrificed in the traditional policies. Therefore, the original reachability states of the original model can not be conserved. However, this paper is able to maintain all the reachability states of the original net and guaranty the control system live. Under our control policy, all number of reachability states of the original net will be preserved. Finally, two examples are performed that can reach the maximal permissiveness for FMSs using Petri net models (PNMs).


2014 ◽  
Vol 998-999 ◽  
pp. 751-754
Author(s):  
Yu Ming Zhao ◽  
Xiang Ju Chai ◽  
Li Zhen Zhao

This article shows a composed method for modeling the concurrent execution of working processes in flexible manufacturing systems (FMS) by a special class of Petri nets named Resource Oriented Petri nets (ROPN). Essentially, the type of net comes from the availability of system resources. The analysis of ROPN is used to characterize deadlock situations in terms of full markings for certain structure named PPC. For the sake of preventing the system from deadlocks, a policy is proposed based on a series of restrictions for resource allocation, without considering the presence of unmarked siphons in Process Oriented Petri net (POPN). Finally, a control strategy of deadlock avoidance is designed for ROPN, which is better than other control policy.


Author(s):  
Mingming Yan

This chapter focuses on the deadlock prevention problems in Flexible Manufacturing Systems (FMS), and the major target is to design more excellent controllers that lead to a more permissive supervisor by adding a smaller number of monitors and arcs than the existing ones in the literature for the design of liveness-enforcing Petri net supervisors. The authors distinguish siphons in a Petri net model by elementary and dependent ones. For each elementary siphon, a monitor is added to the plant model such that it is invariant-controlled without generating emptiable control-induced siphons, and the controllability of a dependent siphon is ensured by changing the control depth variables of its related elementary siphons. Hence, a structurally simple Petri net supervisor is achieved. Based on the previous work, this chapter explores two optimized deadlock prevention approaches based on elementary siphons that can achieve the same control purpose and have more excellent performance.


Author(s):  
Chunfu Zhong ◽  
Zhiwu Li

In flexible manufacturing systems, deadlocks usually occur due to the limited resources. To cope with deadlock problems, Petri nets are widely used to model these systems. This chapter focuses on deadlock prevention for flexible manufacturing systems that are modeled with S4R nets, a subclass of generalized Petri nets. The analysis of S4R leads us to derive an iterative deadlock prevention approach. At each iteration step, a non-max-controlled siphon is derived by solving a mixed integer linear programming. A monitor is constructed for the siphon such that it is max-controlled. Finally, a liveness-enforcing Petri net supervisor can be derived without enumerating all the strict minimal siphons.


Sign in / Sign up

Export Citation Format

Share Document