Algorithmic Mechanism Design for Collaboration in Large-Scale Transportation Networks

Author(s):  
Minghui Lai ◽  
Xiaoqiang Cai
Algorithmica ◽  
2021 ◽  
Author(s):  
Jie Zhang

AbstractApart from the principles and methodologies inherited from Economics and Game Theory, the studies in Algorithmic Mechanism Design typically employ the worst-case analysis and design of approximation schemes of Theoretical Computer Science. For instance, the approximation ratio, which is the canonical measure of evaluating how well an incentive-compatible mechanism approximately optimizes the objective, is defined in the worst-case sense. It compares the performance of the optimal mechanism against the performance of a truthful mechanism, for all possible inputs. In this paper, we take the average-case analysis approach, and tackle one of the primary motivating problems in Algorithmic Mechanism Design—the scheduling problem (Nisan and Ronen, in: Proceedings of the 31st annual ACM symposium on theory of computing (STOC), 1999). One version of this problem, which includes a verification component, is studied by Koutsoupias (Theory Comput Syst 54(3):375–387, 2014). It was shown that the problem has a tight approximation ratio bound of $$(n+1)/2$$ ( n + 1 ) / 2 for the single-task setting, where n is the number of machines. We show, however, when the costs of the machines to executing the task follow any independent and identical distribution, the average-case approximation ratio of the mechanism given by Koutsoupias (Theory Comput Syst 54(3):375–387, 2014) is upper bounded by a constant. This positive result asymptotically separates the average-case ratio from the worst-case ratio. It indicates that the optimal mechanism devised for a worst-case guarantee works well on average.


2020 ◽  
Vol 14 (3) ◽  
pp. 342-350
Author(s):  
Hao Liu ◽  
Jindong Han ◽  
Yanjie Fu ◽  
Jingbo Zhou ◽  
Xinjiang Lu ◽  
...  

Multi-modal transportation recommendation aims to provide the most appropriate travel route with various transportation modes according to certain criteria. After analyzing large-scale navigation data, we find that route representations exhibit two patterns: spatio-temporal autocorrelations within transportation networks and the semantic coherence of route sequences. However, there are few studies that consider both patterns when developing multi-modal transportation systems. To this end, in this paper, we study multi-modal transportation recommendation with unified route representation learning by exploiting both spatio-temporal dependencies in transportation networks and the semantic coherence of historical routes. Specifically, we propose to unify both dynamic graph representation learning and hierarchical multi-task learning for multi-modal transportation recommendations. Along this line, we first transform the multi-modal transportation network into time-dependent multi-view transportation graphs and propose a spatiotemporal graph neural network module to capture the spatial and temporal autocorrelation. Then, we introduce a coherent-aware attentive route representation learning module to project arbitrary-length routes into fixed-length representation vectors, with explicit modeling of route coherence from historical routes. Moreover, we develop a hierarchical multi-task learning module to differentiate route representations for different transport modes, and this is guided by the final recommendation feedback as well as multiple auxiliary tasks equipped in different network layers. Extensive experimental results on two large-scale real-world datasets demonstrate the performance of the proposed system outperforms eight baselines.


2006 ◽  
Author(s):  
Mansoureh Jeihani ◽  
Hanif D. Sherali ◽  
Antoine G. Hobeika

2011 ◽  
pp. 363-384 ◽  
Author(s):  
Joan Feigenbaum ◽  
Michael Schapira ◽  
Scott Shenker

Sign in / Sign up

Export Citation Format

Share Document