representation learning
Recently Published Documents





2022 ◽  
Vol 13 (1) ◽  
pp. 1-25
Yuandong Wang ◽  
Hongzhi Yin ◽  
Tong Chen ◽  
Chunyang Liu ◽  
Ben Wang ◽  

In recent years, ride-hailing services have been increasingly prevalent, as they provide huge convenience for passengers. As a fundamental problem, the timely prediction of passenger demands in different regions is vital for effective traffic flow control and route planning. As both spatial and temporal patterns are indispensable passenger demand prediction, relevant research has evolved from pure time series to graph-structured data for modeling historical passenger demand data, where a snapshot graph is constructed for each time slot by connecting region nodes via different relational edges (origin-destination relationship, geographical distance, etc.). Consequently, the spatiotemporal passenger demand records naturally carry dynamic patterns in the constructed graphs, where the edges also encode important information about the directions and volume (i.e., weights) of passenger demands between two connected regions. aspects in the graph-structure data. representation for DDW is the key to solve the prediction problem. However, existing graph-based solutions fail to simultaneously consider those three crucial aspects of dynamic, directed, and weighted graphs, leading to limited expressiveness when learning graph representations for passenger demand prediction. Therefore, we propose a novel spatiotemporal graph attention network, namely Gallat ( G raph prediction with all at tention) as a solution. In Gallat, by comprehensively incorporating those three intrinsic properties of dynamic directed and weighted graphs, we build three attention layers to fully capture the spatiotemporal dependencies among different regions across all historical time slots. Moreover, the model employs a subtask to conduct pretraining so that it can obtain accurate results more quickly. We evaluate the proposed model on real-world datasets, and our experimental results demonstrate that Gallat outperforms the state-of-the-art approaches.

2022 ◽  
Vol 13 (1) ◽  
pp. 1-23
Christoffer Löffler ◽  
Luca Reeb ◽  
Daniel Dzibela ◽  
Robert Marzilger ◽  
Nicolas Witt ◽  

This work proposes metric learning for fast similarity-based scene retrieval of unstructured ensembles of trajectory data from large databases. We present a novel representation learning approach using Siamese Metric Learning that approximates a distance preserving low-dimensional representation and that learns to estimate reasonable solutions to the assignment problem. To this end, we employ a Temporal Convolutional Network architecture that we extend with a gating mechanism to enable learning from sparse data, leading to solutions to the assignment problem exhibiting varying degrees of sparsity. Our experimental results on professional soccer tracking data provides insights on learned features and embeddings, as well as on generalization, sensitivity, and network architectural considerations. Our low approximation errors for learned representations and the interactive performance with retrieval times several magnitudes smaller shows that we outperform previous state of the art.

2022 ◽  
Vol 16 (3) ◽  
pp. 1-21
Heli Sun ◽  
Yang Li ◽  
Bing Lv ◽  
Wujie Yan ◽  
Liang He ◽  

Graph representation learning aims at learning low-dimension representations for nodes in graphs, and has been proven very useful in several downstream tasks. In this article, we propose a new model, Graph Community Infomax (GCI), that can adversarial learn representations for nodes in attributed networks. Different from other adversarial network embedding models, which would assume that the data follow some prior distributions and generate fake examples, GCI utilizes the community information of networks, using nodes as positive(or real) examples and negative(or fake) examples at the same time. An autoencoder is applied to learn the embedding vectors for nodes and reconstruct the adjacency matrix, and a discriminator is used to maximize the mutual information between nodes and communities. Experiments on several real-world and synthetic networks have shown that GCI outperforms various network embedding methods on community detection tasks.

2022 ◽  
Vol 12 (4) ◽  
pp. 807-812
Yan Li ◽  
Yu-Ren Zhang ◽  
Ping Zhang ◽  
Dong-Xu Li ◽  
Tian-Long Xiao

It is a critical impact on the processing of biological cells to protein–protein interactions (PPIs) in nature. Traditional PPIs predictive biological experiments consume a lot of human and material costs and time. Therefore, there is a great need to use computational methods to forecast PPIs. Most of the existing calculation methods are based on the sequence characteristics or internal structural characteristics of proteins, and most of them have the singleness of features. Therefore, we propose a novel method to predict PPIs base on multiple information fusion through graph representation learning. Specifically, firstly, the known protein sequences are calculated, and the properties of each protein are obtained by k-mer. Then, the known protein relationship pairs were constructed into an adjacency graph, and the graph representation learning method–graph convolution network was used to fuse the attributes of each protein with the graph structure information to obtain the features containing a variety of information. Finally, we put the multi-information features into the random forest classifier species for prediction and classification. Experimental results indicate that our method has high accuracy and AUC of 78.83% and 86.10%, respectively. In conclusion, our method has an excellent application prospect for predicting unknown PPIs.

2022 ◽  
Vol 40 (2) ◽  
pp. 1-26
Chengyuan Zhang ◽  
Yang Wang ◽  
Lei Zhu ◽  
Jiayu Song ◽  
Hongzhi Yin

With the rapid development of online social recommendation system, substantial methods have been proposed. Unlike traditional recommendation system, social recommendation performs by integrating social relationship features, where there are two major challenges, i.e., early summarization and data sparsity. Thus far, they have not been solved effectively. In this article, we propose a novel social recommendation approach, namely Multi-Graph Heterogeneous Interaction Fusion (MG-HIF), to solve these two problems. Our basic idea is to fuse heterogeneous interaction features from multi-graphs, i.e., user–item bipartite graph and social relation network, to improve the vertex representation learning. A meta-path cross-fusion model is proposed to fuse multi-hop heterogeneous interaction features via discrete cross-correlations. Based on that, a social relation GAN is developed to explore latent friendships of each user. We further fuse representations from two graphs by a novel multi-graph information fusion strategy with attention mechanism. To the best of our knowledge, this is the first work to combine meta-path with social relation representation. To evaluate the performance of MG-HIF, we compare MG-HIF with seven states of the art over four benchmark datasets. The experimental results show that MG-HIF achieves better performance.

2022 ◽  
Vol 40 (4) ◽  
pp. 1-46
Hao Peng ◽  
Ruitong Zhang ◽  
Yingtong Dou ◽  
Renyu Yang ◽  
Jingyi Zhang ◽  

Graph Neural Networks (GNNs) have been widely used for the representation learning of various structured graph data, typically through message passing among nodes by aggregating their neighborhood information via different operations. While promising, most existing GNNs oversimplify the complexity and diversity of the edges in the graph and thus are inefficient to cope with ubiquitous heterogeneous graphs, which are typically in the form of multi-relational graph representations. In this article, we propose RioGNN , a novel Reinforced, recursive, and flexible neighborhood selection guided multi-relational Graph Neural Network architecture, to navigate complexity of neural network structures whilst maintaining relation-dependent representations. We first construct a multi-relational graph, according to the practical task, to reflect the heterogeneity of nodes, edges, attributes, and labels. To avoid the embedding over-assimilation among different types of nodes, we employ a label-aware neural similarity measure to ascertain the most similar neighbors based on node attributes. A reinforced relation-aware neighbor selection mechanism is developed to choose the most similar neighbors of a targeting node within a relation before aggregating all neighborhood information from different relations to obtain the eventual node embedding. Particularly, to improve the efficiency of neighbor selecting, we propose a new recursive and scalable reinforcement learning framework with estimable depth and width for different scales of multi-relational graphs. RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation via the filtering threshold mechanism. Comprehensive experiments on real-world graph data and practical tasks demonstrate the advancements of effectiveness, efficiency, and the model explainability, as opposed to other comparative GNN models.

2022 ◽  
Vol 16 (4) ◽  
pp. 1-16
Fereshteh Jafariakinabad ◽  
Kien A. Hua

The syntactic structure of sentences in a document substantially informs about its authorial writing style. Sentence representation learning has been widely explored in recent years and it has been shown that it improves the generalization of different downstream tasks across many domains. Even though utilizing probing methods in several studies suggests that these learned contextual representations implicitly encode some amount of syntax, explicit syntactic information further improves the performance of deep neural models in the domain of authorship attribution. These observations have motivated us to investigate the explicit representation learning of syntactic structure of sentences. In this article, we propose a self-supervised framework for learning structural representations of sentences. The self-supervised network contains two components; a lexical sub-network and a syntactic sub-network which take the sequence of words and their corresponding structural labels as the input, respectively. Due to the n -to-1 mapping of words to their structural labels, each word will be embedded into a vector representation which mainly carries structural information. We evaluate the learned structural representations of sentences using different probing tasks, and subsequently utilize them in the authorship attribution task. Our experimental results indicate that the structural embeddings significantly improve the classification tasks when concatenated with the existing pre-trained word embeddings.

2022 ◽  
Vol 40 (3) ◽  
pp. 1-28
Surong Yan ◽  
Kwei-Jay Lin ◽  
Xiaolin Zheng ◽  
Haosen Wang

Explicit and implicit knowledge about users and items have been used to describe complex and heterogeneous side information for recommender systems (RSs). Many existing methods use knowledge graph embedding (KGE) to learn the representation of a user-item knowledge graph (KG) in low-dimensional space. In this article, we propose a lightweight end-to-end joint learning framework for fusing the tasks of KGE and RSs at the model level. Our method proposes a lightweight KG embedding method by using bidirectional bijection relation-type modeling to enable scalability for large graphs while using self-adaptive negative sampling to optimize negative sample generating. Our method further generates the integrated views for users and items based on relation-types to explicitly model users’ preferences and items’ features, respectively. Finally, we add virtual “recommendation” relations between the integrated views of users and items to model the preferences of users on items, seamlessly integrating RS with user-item KG over a unified graph. Experimental results on multiple datasets and benchmarks show that our method can achieve a better accuracy of recommendation compared with existing state-of-the-art methods. Complexity and runtime analysis suggests that our method can gain a lower time and space complexity than most of existing methods and improve scalability.

2022 ◽  
Vol 3 (1) ◽  
pp. 1-26
Omid Hajihassani ◽  
Omid Ardakanian ◽  
Hamzeh Khazaei

The abundance of data collected by sensors in Internet of Things devices and the success of deep neural networks in uncovering hidden patterns in time series data have led to mounting privacy concerns. This is because private and sensitive information can be potentially learned from sensor data by applications that have access to this data. In this article, we aim to examine the tradeoff between utility and privacy loss by learning low-dimensional representations that are useful for data obfuscation. We propose deterministic and probabilistic transformations in the latent space of a variational autoencoder to synthesize time series data such that intrusive inferences are prevented while desired inferences can still be made with sufficient accuracy. In the deterministic case, we use a linear transformation to move the representation of input data in the latent space such that the reconstructed data is likely to have the same public attribute but a different private attribute than the original input data. In the probabilistic case, we apply the linear transformation to the latent representation of input data with some probability. We compare our technique with autoencoder-based anonymization techniques and additionally show that it can anonymize data in real time on resource-constrained edge devices.

2022 ◽  
Vol 31 (2) ◽  
pp. 1-34
Patrick Keller ◽  
Abdoul Kader Kaboré ◽  
Laura Plein ◽  
Jacques Klein ◽  
Yves Le Traon ◽  

Recent successes in training word embeddings for Natural Language Processing ( NLP ) tasks have encouraged a wave of research on representation learning for source code, which builds on similar NLP methods. The overall objective is then to produce code embeddings that capture the maximum of program semantics. State-of-the-art approaches invariably rely on a syntactic representation (i.e., raw lexical tokens, abstract syntax trees, or intermediate representation tokens) to generate embeddings, which are criticized in the literature as non-robust or non-generalizable. In this work, we investigate a novel embedding approach based on the intuition that source code has visual patterns of semantics. We further use these patterns to address the outstanding challenge of identifying semantic code clones. We propose the WySiWiM  ( ‘ ‘What You See Is What It Means ” ) approach where visual representations of source code are fed into powerful pre-trained image classification neural networks from the field of computer vision to benefit from the practical advantages of transfer learning. We evaluate the proposed embedding approach on the task of vulnerable code prediction in source code and on two variations of the task of semantic code clone identification: code clone detection (a binary classification problem), and code classification (a multi-classification problem). We show with experiments on the BigCloneBench (Java), Open Judge (C) that although simple, our WySiWiM  approach performs as effectively as state-of-the-art approaches such as ASTNN or TBCNN. We also showed with data from NVD and SARD that WySiWiM  representation can be used to learn a vulnerable code detector with reasonable performance (accuracy ∼90%). We further explore the influence of different steps in our approach, such as the choice of visual representations or the classification algorithm, to eventually discuss the promises and limitations of this research direction.

Sign in / Sign up

Export Citation Format

Share Document