Dairy Cow Tiny Face Recognition Based on Convolutional Neural Networks

Author(s):  
Zehao Yang ◽  
Hao Xiong ◽  
Xiaolang Chen ◽  
Hanxing Liu ◽  
Yingjie Kuang ◽  
...  
Author(s):  
Ridha Ilyas Bendjillali ◽  
Mohammed Beladgham ◽  
Khaled Merit ◽  
Abdelmalik Taleb-Ahmed

<p><span>In the last decade, facial recognition techniques are considered the most important fields of research in biometric technology. In this research paper, we present a Face Recognition (FR) system divided into three steps: The Viola-Jones face detection algorithm, facial image enhancement using Modified Contrast Limited Adaptive Histogram Equalization algorithm (M-CLAHE), and feature learning for classification. For learning the features followed by classification we used VGG16, ResNet50 and Inception-v3 Convolutional Neural Networks (CNN) architectures for the proposed system. Our experimental work was performed on the Extended Yale B database and CMU PIE face database. Finally, the comparison with the other methods on both databases shows the robustness and effectiveness of the proposed approach. Where the Inception-v3 architecture has achieved a rate of 99, 44% and 99, 89% respectively.</span></p>


2016 ◽  
Vol 07 (03) ◽  
pp. 141-151 ◽  
Author(s):  
Hachim El Khiyari ◽  
Harry Wechsler

Information ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 361
Author(s):  
Handan Hou ◽  
Wei Shi ◽  
Jinyan Guo ◽  
Zhe Zhang ◽  
Weizheng Shen ◽  
...  

Individual identification of dairy cows based on computer vision technology shows strong performance and practicality. Accurate identification of each dairy cow is the prerequisite of artificial intelligence technology applied in smart animal husbandry. While the rump of each dairy cow also has lots of important features, so do the back and head, which are also important for individual recognition. In this paper, we propose a non-contact cow rump identification method based on convolutional neural networks. First, the rump image sequences of the cows while feeding were collected. Then, an object detection model was applied to detect the cow rump object in each frame of image. Finally, a fine-tuned convolutional neural network model was trained to identify cow rumps. An image dataset containing 195 different cows was created to validate the proposed method. The method achieved an identification accuracy of 99.76%, which showed a better performance compared to other related methods and a good potential in the actual production environment of cow husbandry, and the model is light enough to be deployed in an edge-computing device.


Sign in / Sign up

Export Citation Format

Share Document