scholarly journals Illumination-robust face recognition based on deep convolutional neural networks architectures

Author(s):  
Ridha Ilyas Bendjillali ◽  
Mohammed Beladgham ◽  
Khaled Merit ◽  
Abdelmalik Taleb-Ahmed

<p><span>In the last decade, facial recognition techniques are considered the most important fields of research in biometric technology. In this research paper, we present a Face Recognition (FR) system divided into three steps: The Viola-Jones face detection algorithm, facial image enhancement using Modified Contrast Limited Adaptive Histogram Equalization algorithm (M-CLAHE), and feature learning for classification. For learning the features followed by classification we used VGG16, ResNet50 and Inception-v3 Convolutional Neural Networks (CNN) architectures for the proposed system. Our experimental work was performed on the Extended Yale B database and CMU PIE face database. Finally, the comparison with the other methods on both databases shows the robustness and effectiveness of the proposed approach. Where the Inception-v3 architecture has achieved a rate of 99, 44% and 99, 89% respectively.</span></p>

2021 ◽  
Vol 9 ◽  
Author(s):  
Hui Liu ◽  
Zi-Hua Mo ◽  
Hang Yang ◽  
Zheng-Fu Zhang ◽  
Dian Hong ◽  
...  

Background: Williams-Beuren syndrome (WBS) is a rare genetic syndrome with a characteristic “elfin” facial gestalt. The “elfin” facial characteristics include a broad forehead, periorbital puffiness, flat nasal bridge, short upturned nose, wide mouth, thick lips, and pointed chin. Recently, deep convolutional neural networks (CNNs) have been successfully applied to facial recognition for diagnosing genetic syndromes. However, there is little research on WBS facial recognition using deep CNNs.Objective: The purpose of this study was to construct an automatic facial recognition model for WBS diagnosis based on deep CNNs.Methods: The study enrolled 104 WBS children, 91 cases with other genetic syndromes, and 145 healthy children. The photo dataset used only one frontal facial photo from each participant. Five face recognition frameworks for WBS were constructed by adopting the VGG-16, VGG-19, ResNet-18, ResNet-34, and MobileNet-V2 architectures, respectively. ImageNet transfer learning was used to avoid over-fitting. The classification performance of the facial recognition models was assessed by five-fold cross validation, and comparison with human experts was performed.Results: The five face recognition frameworks for WBS were constructed. The VGG-19 model achieved the best performance. The accuracy, precision, recall, F1 score, and area under curve (AUC) of the VGG-19 model were 92.7 ± 1.3%, 94.0 ± 5.6%, 81.7 ± 3.6%, 87.2 ± 2.0%, and 89.6 ± 1.3%, respectively. The highest accuracy, precision, recall, F1 score, and AUC of human experts were 82.1, 65.9, 85.6, 74.5, and 83.0%, respectively. The AUCs of each human expert were inferior to the AUCs of the VGG-16 (88.6 ± 3.5%), VGG-19 (89.6 ± 1.3%), ResNet-18 (83.6 ± 8.2%), and ResNet-34 (86.3 ± 4.9%) models.Conclusions: This study highlighted the possibility of using deep CNNs for diagnosing WBS in clinical practice. The facial recognition framework based on VGG-19 could play a prominent role in WBS diagnosis. Transfer learning technology can help to construct facial recognition models of genetic syndromes with small-scale datasets.


2021 ◽  
pp. 1-13
Author(s):  
Xiang-Min Liu ◽  
Jian Hu ◽  
Deborah Simon Mwakapesa ◽  
Y.A. Nanehkaran ◽  
Yi-Min Mao ◽  
...  

Deep convolutional neural networks (DCNNs), with their complex network structure and powerful feature learning and feature expression capabilities, have been remarkable successes in many large-scale recognition tasks. However, with the expectation of memory overhead and response time, along with the increasing scale of data, DCNN faces three non-rival challenges in a big data environment: excessive network parameters, slow convergence, and inefficient parallelism. To tackle these three problems, this paper develops a deep convolutional neural networks optimization algorithm (PDCNNO) in the MapReduce framework. The proposed method first pruned the network to obtain a compressed network in order to effectively reduce redundant parameters. Next, a conjugate gradient method based on modified secant equation (CGMSE) is developed in the Map phase to further accelerate the convergence of the network. Finally, a load balancing strategy based on regulate load rate (LBRLA) is proposed in the Reduce phase to quickly achieve equal grouping of data and thus improving the parallel performance of the system. We compared the PDCNNO algorithm with other algorithms on three datasets, including SVHN, EMNIST Digits, and ISLVRC2012. The experimental results show that our algorithm not only reduces the space and time overhead of network training but also obtains a well-performing speed-up ratio in a big data environment.


2019 ◽  
Vol 10 (1) ◽  
pp. 60 ◽  
Author(s):  
Shengwei Zhou ◽  
Caikou Chen ◽  
Guojiang Han ◽  
Xielian Hou

Learning large-margin face features whose intra-class variance is small and inter-class diversity is one of important challenges in feature learning applying Deep Convolutional Neural Networks (DCNNs) for face recognition. Recently, an appealing line of research is to incorporate an angular margin in the original softmax loss functions for obtaining discriminative deep features during the training of DCNNs. In this paper we propose a novel loss function, termed as double additive margin Softmax loss (DAM-Softmax). The presented loss has a clearer geometrical explanation and can obtain highly discriminative features for face recognition. Extensive experimental evaluation of several recent state-of-the-art softmax loss functions are conducted on the relevant face recognition benchmarks, CASIA-Webface, LFW, CALFW, CPLFW, and CFP-FP. We show that the proposed loss function consistently outperforms the state-of-the-art.


Sign in / Sign up

Export Citation Format

Share Document