identification accuracy
Recently Published Documents


TOTAL DOCUMENTS

957
(FIVE YEARS 485)

H-INDEX

32
(FIVE YEARS 7)

2022 ◽  
Vol 18 (1) ◽  
pp. 1-24
Author(s):  
Yi Zhang ◽  
Yue Zheng ◽  
Guidong Zhang ◽  
Kun Qian ◽  
Chen Qian ◽  
...  

Gait, the walking manner of a person, has been perceived as a physical and behavioral trait for human identification. Compared with cameras and wearable sensors, Wi-Fi-based gait recognition is more attractive because Wi-Fi infrastructure is almost available everywhere and is able to sense passively without the requirement of on-body devices. However, existing Wi-Fi sensing approaches impose strong assumptions of fixed user walking trajectories, sufficient training data, and identification of already known users. In this article, we present GaitSense , a Wi-Fi-based human identification system, to overcome the above unrealistic assumptions. To deal with various walking trajectories and speeds, GaitSense first extracts target specific features that best characterize gait patterns and applies novel normalization algorithms to eliminate gait irrelevant perturbation in signals. On this basis, GaitSense reduces the training efforts in new deployment scenarios by transfer learning and data augmentation techniques. GaitSense also enables a distinct feature of illegal user identification by anomaly detection, making the system readily available for real-world deployment. Our implementation and evaluation with commodity Wi-Fi devices demonstrate a consistent identification accuracy across various deployment scenarios with little training samples, pushing the limit of gait recognition with Wi-Fi signals.


Author(s):  
Terence J. McElvaney ◽  
Magda Osman ◽  
Isabelle Mareschal

AbstractTo date, it is still unclear whether there is a systematic pattern in the errors made in eyewitness recall and whether certain features of a person are more likely to lead to false identification. Moreover, we also do not know the extent of systematic errors impacting identification of a person from their body rather than solely their face. To address this, based on the contextual model of eyewitness identification (CMEI; Osborne & Davies, 2014, Applied Cognitive Psychology, 28[3], 392–402), we hypothesized that having framed a target as a perpetrator of a violent crime, participants would recall that target person as appearing more like a stereotypical criminal (i.e., more threatening). In three separate experiments, participants were first presented with either no frame, a neutral frame, or a criminal frame (perpetrators of a violent crime) accompanying a target (either a face or body). Participants were then asked to identify the original target from a selection of people that varied in facial threat or body musculature. Contrary to our hypotheses, we found no evidence of bias. However, identification accuracy was highest for the most threatening target bodies high in musculature, as well as bodies paired with detailed neutral contextual information. Overall, these findings suggest that while no systematic bias exists in the recall of criminal bodies, the nature of the body itself and the context in which it is presented can significantly impact identification accuracy.


2022 ◽  
Vol 15 ◽  
Author(s):  
Valeriy Shafiro ◽  
Nathan Luzum ◽  
Aaron C. Moberly ◽  
Michael S. Harris

Objectives: Improved perception of environmental sounds (PES) is one of the primary benefits of cochlear implantation (CI). However, past research contains mixed findings on PES ability in contemporary CI users, which at times contrast with anecdotal clinical reports. The present review examined extant PES research to provide an evidence basis for clinical counseling, identify knowledge gaps, and suggest directions for future work in this area of CI outcome assessment.Methods: Six electronic databases were searched using medical subject headings (MeSH) and keywords broadly identified to reference CI and environmental sounds. Records published between 2000 and 2021 were screened by two independent reviewers in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement to identify studies that met the inclusion criteria. Data were subsequently extracted and evaluated according to synthesis without-meta-analysis (SWiM) guidelines.Results: Nineteen studies met the inclusion criteria. Most examined PES in post-lingually implanted adults, with one study focused on pre/perilingual adults. Environmental sound identification (ESI) in quiet using open- or closed-set response format was most commonly used in PES assessment, included in all selected studies. ESI accuracy in CI children (3 studies) and adults (16 studies), was highly variable but generally mediocre (means range: 31–87%). Only two studies evaluated ESI performance prospectively before and after CI, while most studies were cross-sectional. Overall, CI performance was consistently lower than that of normal-hearing peers. No significant differences in identification accuracy were reported between CI candidates and CI users. Environmental sound identification correlated in CI users with measures of speech perception, music and spectro-temporal processing.Conclusion: The findings of this systematic review indicate considerable limitations in the current knowledge of PES in contemporary CI users, especially in pre/perilingual late-implanted adults and children. Although no overall improvement in PES following implantation was found, large individual variability and existing methodological limitations in PES assessment may potentially obscure potential CI benefits for PES. Further research in this ecologically relevant area of assessment is needed to establish a stronger evidence basis, identify CI users with significant deficits, and improve CI users' safety and satisfaction through targeted PES rehabilitation.


Author(s):  
Yuzhi Wan ◽  
Nadine Sarter

Objective The aim of this study was to establish the effects of simultaneous and asynchronous masking on the detection and identification of visual and auditory alarms in close temporal proximity. Background In complex and highly coupled systems, malfunctions can trigger numerous alarms within a short period of time. During such alarm floods, operators may fail to detect and identify alarms due to asynchronous and simultaneous masking. To date, the effects of masking on detection and identification have been studied almost exclusively for two alarms during single-task performance. This research examines 1) how masking affects alarm detection and identification in multitask environments and 2) whether those effects increase as a function of the number of alarms. Method Two experiments were conducted using a simulation of a drone-based package delivery service. Participants were required to ensure package delivery and respond to visual and auditory alarms associated with eight drones. The alarms were presented at various stimulus onset asynchronies (SOAs). The dependent measures included alarm detection rate, identification accuracy, and response time. Results Masking was observed intramodally and cross-modally for visual and auditory alarms. The SOAs at which asynchronous masking occurred were longer than reported in basic research on masking. The effects of asynchronous and, even more so, simultaneous masking became stronger as the number of alarms increased. Conclusion Masking can lead to breakdowns in the detection and identification of alarms in close temporal proximity in complex data-rich domains. Application The findings from this research provide guidance for the design of alarm systems.


Author(s):  
Yuan Chao ◽  
Fan Shi ◽  
Wentao Shan ◽  
Dong Liang

The position identification of SMD electronic components mainly uses Canny edge detection algorithm to detect the edges of specific elements, benefited from its computational simplicity. The traditional Canny algorithm lacks the adaptability in gradient calculation and double thresholds selection, which may affect the location and identification accuracy of specific elements in electronic components. In this paper, an improved canny edge detection algorithm is proposed. The gradient magnitude is calculated in four directions, i.e., horizontal, vertical, and diagonal. Both the high and low thresholds can be adaptively determined based on the grayscale distribution information, to increase the adaptability of edge identification. The experimental results show that the proposed method can better locate the true edges of specific elements in electronic components with a reasonable processing speed, compared with the traditional Canny algorithm, and has been successfully applied on practical real-time vision inspection on SMD electronic components.


Robotica ◽  
2022 ◽  
pp. 1-16
Author(s):  
Peng Zhang ◽  
Junxia Zhang

Abstract Efficient and high-precision identification of dynamic parameters is the basis of model-based robot control. Firstly, this paper designed the structure and control system of the developed lower extremity exoskeleton robot. The dynamics modeling of the exoskeleton robot is performed. The minimum parameter set of the identified parameters is determined. The dynamic model is linearized based on the parallel axis theory. Based on the beetle antennae search algorithm (BAS) and particle swarm optimization (PSO), the beetle swarm optimization algorithm (BSO) was designed and applied to the identification of dynamic parameters. The update rule of each particle originates from BAS, and there is an individual’s judgment on the environment space in each iteration. This method does not rely on the historical best solution in the PSO and the current global optimal solution of the individual particle, thereby reducing the number of iterations and improving the search speed and accuracy. Four groups of test functions with different characteristics were used to verify the performance of the proposed algorithm. Experimental results show that the BSO algorithm has a good balance between exploration and exploitation capabilities to promote the beetle to move to the global optimum. Besides, the test was carried out on the exoskeleton dynamics model. This method can obtain independent dynamic parameters and achieve ideal identification accuracy. The prediction result of torque based on the identification method is in good agreement with the ideal torque of the robot control.


Author(s):  
Canyi Du ◽  
Xinyu Zhang ◽  
Rui Zhong ◽  
Feng Li ◽  
Feifei Yu ◽  
...  

Abstract Aiming at the possible mechanical faults of UAV rotor in the working process, this paper proposes a UAV rotor fault identification method based on interval sampling reconstruction of vibration signals and one-dimensional convolutional neural network (1D-CNN) deep learning. Firstly, experiments were designed to collect the vibration acceleration signals of UAV working at high speed under three states (normal, rotor damage by varying degrees, and rotor crack by different degrees). Then considering the powerful feature extraction and complex data analysis abilities of 1D-CNN, an effective deep learning model for fault identification is established utilizing 1D-CNN. During analysis, it is found that the recognition effect of minor faults is not ideal, which causes by all states were identified as normal and then reduces the overall identification accuracy, when using conventional sequential sampling to construct learning. To this end, in order to make the sample data cover the whole process of data collection as much as possible, a learning sample processing method based on interval sampling reconstruction of vibration signal is proposed. And it is also verified that the sample set reconstructed can easily reflect the global information of mechanical operation. Finally, according to the comparison of analysis results, the recognition rate of deep learning model for different degrees of faults is greatly improved, and minor faults could also be accurately identified, through this method. The results show that, the 1D-CNN deep learning model, could diagnose and identify UAV rotor damage faults accurately, by combing the proposed method of interval sampling reconstruction.


PLoS Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. e3001509
Author(s):  
Qiaohan Yang ◽  
Guangyu Zhou ◽  
Torben Noto ◽  
Jessica W. Templer ◽  
Stephan U. Schuele ◽  
...  

Studies of neuronal oscillations have contributed substantial insight into the mechanisms of visual, auditory, and somatosensory perception. However, progress in such research in the human olfactory system has lagged behind. As a result, the electrophysiological properties of the human olfactory system are poorly understood, and, in particular, whether stimulus-driven high-frequency oscillations play a role in odor processing is unknown. Here, we used direct intracranial recordings from human piriform cortex during an odor identification task to show that 3 key oscillatory rhythms are an integral part of the human olfactory cortical response to smell: Odor induces theta, beta, and gamma rhythms in human piriform cortex. We further show that these rhythms have distinct relationships with perceptual behavior. Odor-elicited gamma oscillations occur only during trials in which the odor is accurately perceived, and features of gamma oscillations predict odor identification accuracy, suggesting that they are critical for odor identity perception in humans. We also found that the amplitude of high-frequency oscillations is organized by the phase of low-frequency signals shortly following sniff onset, only when odor is present. Our findings reinforce previous work on theta oscillations, suggest that gamma oscillations in human piriform cortex are important for perception of odor identity, and constitute a robust identification of the characteristic electrophysiological response to smell in the human brain. Future work will determine whether the distinct oscillations we identified reflect distinct perceptual features of odor stimuli.


2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Lingfei Mo ◽  
Hongjie Yu ◽  
Wenqi Hua

Human physical activity identification based on wearable sensors is of great significance to human health analysis. A large number of machine learning models have been applied to human physical activity identification and achieved remarkable results. However, most human physical activity identification models can only be trained based on labeled data, and it is difficult to obtain enough labeled data, which leads to weak generalization ability of the model. A Pruning Growing SOM model is proposed in this paper to address the limitations of small-scale labeled dataset, which is unsupervised in the training stage, and then only a small amount of labeled data is used for labeling neurons to reduce dependency on labeled data. In training stage, the inactive neurons in network can be deleted by pruning mechanism, which makes the model more consistent with the data distribution and improves the identification accuracy even on unbalanced dataset, especially for the action categories with poor identification effect. In addition, the pruning mechanism can also speed up the inference of the model by controlling its scale.


2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110729
Author(s):  
Linfeng Deng ◽  
Aihua Zhang ◽  
Rongzhen Zhao

Rolling bearings are the key components of rotating machinery. Incipient fault diagnosis of bearing plays an increasingly important role in guaranteeing normal and safe operation of rotating machinery. However, because of the high complexity of the fault feature extraction, the incipient faults of rolling bearings are difficult to diagnose. To solve this problem, this paper presents a new incipient fault intelligent identification method of rolling bearings based on variational mode decomposition (VMD), principal component analysis (PCA), and support vector machines (SVM). In the proposed method, the bearing vibration signals are decomposed by using VMD, and a series of intrinsic mode functions (IMFs) with different frequencies are obtained. Then, the energy and kurtosis values of each IMF are calculated to reveal the intrinsic characteristics of the vibration signals in different scales. Finally, all energy and kurtosis values of IMFs are processed via PCA and subsequently fed into SVM to achieve the bearing fault identification automatically. The effectiveness of this method is verified through the experimental bearing data. The verification results indicate that the proposed method can effectively extract the bearing fault features and accurately identify the bearing incipient faults, and outperform the two compared methods obviously in identification accuracy and computation time.


Sign in / Sign up

Export Citation Format

Share Document