scholarly journals Development of Design Acceleration Response Spectrum for Building Based on New Indonesian Seismic Hazard Maps 2017

Author(s):  
Windu Partono ◽  
Masyhur Irsyam ◽  
I. Wayan Sengara ◽  
Asrurifak ◽  
Frida Kistiani ◽  
...  
2020 ◽  
Vol 20 (2) ◽  
pp. 207-220
Author(s):  
Hyun Woo Jee ◽  
Sang Whan Han

The 2016 Gyeongju and 2017 Pohang earthquakes caused casualties and economic damage in the surrounding areas. Therefore, the importance of earthquake damage prediction and seismic design in the Korean peninsula has increased. Probabilistic seismic hazard analysis (PSHA) is one of the well-known methods for predicting earthquake damage. The objective of this study is to construct Korean Peninsula seismic hazard maps of 5% damped response spectrum acceleration and peak ground acceleration, using PSHA. To consider the local effects for each site's classification, seismic hazard maps were constructed by considering the site amplification model. To conduct seismic design, uniform hazard response spectra (UHRS) were also constructed for the Korean peninsula.


2009 ◽  
Vol 99 (2A) ◽  
pp. 585-610 ◽  
Author(s):  
A. Akinci ◽  
F. Galadini ◽  
D. Pantosti ◽  
M. Petersen ◽  
L. Malagnini ◽  
...  

1997 ◽  
Vol 14 (2-3) ◽  
pp. 141-154 ◽  
Author(s):  
R. M. W. Musson ◽  
P. W. Winter

2006 ◽  
Vol 77 (1) ◽  
pp. 23-29 ◽  
Author(s):  
C. H. Cramer ◽  
J. S. Gomberg ◽  
E. S. Schweig ◽  
B. A. Waldron ◽  
K. Tucker

Author(s):  
Chris H. Cramer ◽  
Joan S. Gomberg ◽  
Eugene S. Schweig ◽  
Brian A. Waldron ◽  
Kathleen Tucker

2021 ◽  
Vol 331 ◽  
pp. 07009
Author(s):  
I Wayan Sengara ◽  
Fahmi Aldiamar

General assessment on earthquake resistance spectral design load criteria for buildings and infrastructures associated with the recent development of Indonesian seismic hazard maps is presented in this paper. The assessment is directed toward general identification of their associated risks for input to policy formulation of disaster risk reduction management plans or strategies. Indonesian seismic hazard maps haveevolved for the last three decades. This is originated from an early development map before 2002, where a seismic hazard map particularly for buildings (1983) was developed adopting the early process of probabilisticseismic hazard analysis (PSHA) for 200 years return period (RP). Further, a 2002 version seismic hazard maphas been developed in the form of peak ground acceleration (PGA) for 500 years RP. Spectral design criteriafor buildings and bridges have been later developed by updating PSHA involving new seismic source zones, ground-motion predictive equations, and various earthquake RP, accommodating seismic codes for buildings(2500 years RP), for bridges (1000 years RP) and dams involving various RP up to 10,000 years RP correspond to its design level. The spectral accelerations also have included PGA, short (0.2s) period, and 1-s period. The latest update hazard maps (2017) have been developed and adopted for seismic codes for buildings, bridges, dams, and other related infrastructures. The increase in spectral design load criteria is identified to assess the general risk of existing constructions, considering the results of several recent building damage surveys. Adoption of new seismic codes based on the most recent hazard maps along with its enforcement is expected to contribute to seismic disaster risk reduction in Indonesia.


2004 ◽  
Vol 390 (1-4) ◽  
pp. 159-175 ◽  
Author(s):  
James G. Tanner ◽  
Kaye M. Shedlock

2021 ◽  
Author(s):  
Molly Gallahue ◽  
Leah Salditch ◽  
Madeleine Lucas ◽  
James Neely ◽  
Susan Hough ◽  
...  

<div> <p>Probabilistic seismic hazard assessments forecast levels of earthquake shaking that should be exceeded with only a certain probability over a given period of time are important for earthquake hazard mitigation. These rely on assumptions about when and where earthquakes will occur, their size, and the resulting shaking as a function of distance as described by ground-motion models (GMMs) that cover broad geologic regions. Seismic hazard maps are used to develop building codes.</p> </div><div> <p>To explore the robustness of maps’ shaking forecasts, we consider how maps hindcast past shaking. We have compiled the California Historical Intensity Mapping Project (CHIMP) dataset of the maximum observed seismic intensity of shaking from the largest Californian earthquakes over the past 162 years. Previous comparisons between the maps for a constant V<sub>S30</sub> (shear-wave velcoity in the top 30 m of soil) of 760 m/s and CHIMP based on several metrics suggested that current maps overpredict shaking.</p> <p>The differences between the V<sub>S30</sub> at the CHIMP sites and the reference value of 760 m/s could amplify or deamplify the ground motions relative to the mapped values. We evaluate whether the V<sub>S30 </sub>at the CHIMP sites could cause a possible bias in the models. By comparison with the intensity data in CHIMP, we find that using site-specific V<sub>S30</sub> does not improve map performance, because the site corrections cause only minor differences from the original 2018 USGS hazard maps at the short periods (high frequencies) relevant to peak ground acceleration and hence MMI. The minimal differences reflect the fact that the nonlinear deamplification due to increased soil damping largely offsets the linear amplification due to low V<sub>S30</sub>. The net effects will be larger for longer periods relevant to tall buildings, where net amplification occurs. </p> <div> <p>Possible reasons for this discrepancy include limitations of the dataset, a bias in the hazard models, an over-estimation of the aleatory variability of the ground motion or that seismicity throughout the historical period has been lower than the long-term average, perhaps by chance due to the variability of earthquake recurrence. Resolving this discrepancy, which is also observed in Italy and Japan, could improve the performance of seismic hazard maps and thus earthquake safety for California and, by extension, worldwide. We also explore whether new nonergodic GMMs, with reduced aleatory variability, perform better than presently used ergodic GMMs compared to historical data.</p> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document