response spectrum
Recently Published Documents


TOTAL DOCUMENTS

1503
(FIVE YEARS 436)

H-INDEX

33
(FIVE YEARS 5)

2022 ◽  
Vol 12 (2) ◽  
pp. 847
Author(s):  
Xux Ek’ Azucena Novelo ◽  
Hsiao-Yeh Chu

Nut fasteners are produced by machines working around the clock. Companies generally operate with a run-to-failure or planned maintenance approach. Even with a planned maintenance schedule, however, undetected damage to the dies and non-die parts occurring between maintenance periods can cause considerable downtime and pervasive damage to the machine. To address this shortcoming, force data from the fourth and sixth dies of a six-die nut manufacturing machine were analysed using correlation to the best health condition on the force profile and on the force shock response spectrum profile. Fault features such as quality adjustments and damage to both die and non-die parts were detectable prior to required maintenance or machine failure. This detection was facilitated by the determination of health thresholds, whereby the force SRS profile generated a longer warning period prior to failure. The analytical approach could benefit the industry by identifying damage that would normally go undetected by operators, thereby reducing downtime, extending die life, enabling “as needed” maintenance, and optimising machine operation.


2022 ◽  
Vol 10 (1) ◽  
pp. 90
Author(s):  
Kai Dong ◽  
Xianzhou Wang ◽  
Donglei Zhang ◽  
Liwei Liu ◽  
Dakui Feng

The simulations of submarine sailing near the free surface with long-crested waves have been conducted in this study using an in-house viscous URANS solver with an overset grid approach. First, the verification and validation procedures were performed to evaluate the reliability, with the results showing that the generation of irregular waves is adequately accurate and the results of total resistance are in good agreement with EFD. Next, three different submerged depths ranging from 1.1D to 3.3D were selected and the corresponding conditions of submarine sailing near calm water were simulated, the results of which were then compared with each other to investigate the influence of irregular waves and submerged depths. The simulations of the model near calm water at different submerged depths demonstrated that the free surface will cause increasing resistance, lift, and bow-up moments of the model, and this influence decreases dramatically with greater submerged depths. The results of the irregular wave simulations showed that irregular waves cause considerable fluctuations of hydrodynamic force and moments, and that this influence remains even at a deeper submerged depth, which can complicate the control strategies of the submarine. The response spectrum of hydrodynamic forces and moments showed slight amplitudes in the high-frequency region, and the model showed less sensitivity to high-frequency excitations.


2022 ◽  
Author(s):  
Zhongliang Gao ◽  
Qi Geng ◽  
Zhe Wang ◽  
Ting Gao ◽  
Yingfeng Li ◽  
...  

Nanowires are widely used in the optics, optoelectronics, photocatalysis and photovoltaic because of its special optical properties. However, the narrow response spectrum of silicon nanowires (SiNWs) reduces the advantages of...


Author(s):  
Ankit Kumar

Abstract: This study examines the composite structure that is increasing commonly in developing countries. For medium-rise to high-rise building construction, RCC structures is no longer economical due to heavy dead weight, limited span, low natural frequency and hazardous formwork. The majority of commercial buildings are designed and constructed with reinforced concrete, which largely depends on the existence of the constituent materials as well as the quality of the necessary construction skills, and including the usefulness of design standards. Conventional RCC structure is not preferred nowadays for high rise structure. However, composite construction, is a recent development in the construction industry. Concrete-steel composite structures are now very popular due to some outstanding advantages over conventional concrete and steel structures. In the present work, RCC and steel-concrete composite structure are being considered for a Dynamic analysis of a G+25-storey commercial building of uniform and optimized section, located at in seismic zone IV. Response Spectrum analysis method is used to analyze RCC and composite structure, CSI ETABS v19 software is used and various results are compared such as time period, maximum storey displacement, maximum storey stiffness. Maximum storey shear and maximum stoey overturning moment. Keywords: RCC Structure, Composite Structure, Uniform Section, Optimized Section, Shear Connector, Time Period, Storey Displacement, Storey Shear, Storey Stiffness, Response Spectrum method, ETABS


Author(s):  
Deepak Jain

Abstract: Floating column building is a new fascination for engineers. As floating column buildings provides more space and good aesthetics to the building. But have high structural challenges, when a floating column is provided in a multi-story building in a high seismic zone. This paper reviews several studies conducted on the floating column building and its behavior under seismic loads. This paper studies that floating column building are vulnerable to the high seismic zones. The risk of damage also depends on the shape and size of the buildings.The ductile detailing of the joints is the promising solution for immediate failure of such buildings. Keywords: Floating Column, Response spectrum analysis. Vulnerable, damage, multi-story


Author(s):  
Harsh Joshi

Abstract: Due to sloping land and high seismically active zones, designing and construction of multistory buildings in hilly regions is always a challenge for structural engineers. This review paper focuses to establish a review study on the Possible Types of building frame configuration in the hilly region and he behavior of Such building frames under seismic loading conditions, and (3) The recent research and developments to make such frames less vulnerable to earthquakes. This paper concludes that the dynamics characteristics of such buildings are significantly different in both horizontal and vertical directions, resulting in the center of mass and center of stiffness having eccentricity at point of action and not vertically aligned for different floors. When such frames are subjected to lateral loads, due to eccentricity it generates torsion in the frame. Most of the studies agree that the buildings resting on slanting ground have higher displacement and base shear compared to buildings resting on plain ground and the shorter column attracts more forces and undergoes damage when subjected to earthquake. Keywords: Building frame configuration, Seismic behavior, Dynamic characteristics, Response spectrum analysis, time history analysis.


Author(s):  
Varun Mahajan

Abstract: Architects nowadays develop attractive edifices, and floating columns are widely employed in this process. Floating columns are used not only to provide a magnificent perspective but also when a vast open area is necessary. Edifices with irregular configurations are more vulnerable to earthquakes and hence, suitable shear wall placement is required to ensure the edifice's stability. Many multi-storey edifices collapsed in seconds after the Bhuj Earthquake (Jan 26, 2001), due to the presence of soft stories, floating columns, and mass anomalies. As a result, knowing the seismic reactions of these buildings are vital for constructing earthquake-resistant assemblies. The relevance of a Floating Column and the existence of a shear wall in an irregular multistorey building is highlighted in this study. Dynamic seismic behaviour of a G+18 irregular edifice with different locations of the floating column and different positions of the shear wall is explored in this research. The edifice is analysed and compared with the model without shear walls and floating columns to examine the alterations. The dynamic analysis is carried out using Response Spectrum Analysis and storey drift, storey displacement and base shear are calculated and finally, software compression is computed for different zones. The analysis is carried out by Indian standardized codes IS 1893:2016 and IS 456:2000 which are the codes specified by the Bureau of Indian Standards for earthquake resistance edifice design and plain and reinforcement concrete design respectively. Keywords: Floating Column, Shear Wall, Irregular Edifice, Seismic behaviour, Response Spectrum Analysis, storey drift, storey displacement, base shear.


2021 ◽  
Vol 12 (1) ◽  
pp. 125
Author(s):  
Sang-Jin Ma ◽  
Tae-Myung Shin ◽  
Ju-Seung Ryu ◽  
Jin-Hyeong Lee ◽  
Gyeong-Hoi Koo

Response characteristics of small-sized laminated rubber bearings (LRBs) with partial damage and total failure were investigated. For nuclear component seismic isolation, ultimate response characteristics are mainly reviewed using a beyond design basis earthquake (BDBE). Static tests, 3D shaking table tests, and verification analyses were performed using optional LRB design prototypes. During the static test, the hysteresis curve behavior from buckling to potential damage was observed by applying excessive shear deformation. The damaged rubber surface of the laminated section inside the LRB was checked through water jet cutting. A stress review by response spectrum analysis was performed to simulate the dynamic tests and predict seismic inputs’ intensity level that triggers LRB damage. Shaking table tests were executed to determine seismic response characteristics with partial damage and to confirm the stability of the superstructure when the supporting LRBs completely fail. Shear buckling in LRBs by high levels of BDBE may be quickly initiated via partial damage or total failure by the addition of torsional or rotational behavior caused by a change in the dynamic characteristics. Furthermore, the maximum seismic displacement can be limited within the range of the design interface due to the successive slip behavior, even during total LRB failure.


Sign in / Sign up

Export Citation Format

Share Document